Laegna Numbers

Examplified Manual

Denary
Signed

* O: -1; up; limit to -1 or -Zero
e U: 0; middle (inwards); limit to 0 or Zero!

 A:1; down; limit to 1 or +Zero

Unsigned

e U: 0; middle (inwards); limit to 0 or Zero!
* O:1; down; limit to 1 or Zero

e A:2;up; limit to 2 or 2 Infinitesimals

Tenary
V: Upside down U

Unsigned
e I:-2; down; limit to -2 or -Exzero
e O: -1; up; limit to -1 or -Zero
e U: 0; middle (inwards); limit to 0 or Zero!
* A:1; down; limit to 1 or +Zero
e E: 2; up; limit to 2 or +Exzero

e V:2--2;outwards; limit to between 2 and -2 in Order; or
Exzero!

Signed

e U: 0 - 5; inwards / upwards; limit to between -2 and 2 in
Order; or Izzero!

e I: 1; up; limit to -1 or -Zero

* O: 2; down; limit to 1 or Zero

e A: 3; up; limit to 2 or 2 Infinitesimals
e E: 4; up; limit to -1 or -Zero

* V:5-0; outwards / downwards; limit to between 2 and -2 in
Order; or Exzero!

Decimal Signed

* 9A: Velocity=-V (imaginary receiver)

1: Velocity=I

2: Velocity=0
0OA: Velocity=U
3: Velocity=A
4: Velocity=E

5: Acceleration=I

6: Acceleration=0

OB: Acceleration=U

7: Acceleration=A

8: Acceleration=E

9B: Acceleration=V

Decimal Unsigned

* 0
1:

O & N O U1 B~ W N

Jump to 9 (Velocity=0); Value=Velocity
Velocity=1; Value=Velocity

: Velocity=2; Value=Velocity
: Velocity=3; Value=Velocity
: Velocity=4; Value=Velocity
: Acceleration=5; Value=Acceleration
: Acceleration=6; Value=Acceleration
: Acceleration=7; Value=Acceleration
: Acceleration=8; Value=Acceleration

: Jump to 0 (Acceleration=9); Value=Acceleration

Decet
X=X
e 1: Y=X; exZ=exZ
e 2:Y=Y
e 3:Y=Z
X=Y
e 4:Y=X
* 5: Y=Y, exY=exY
* 6:Y=Z
X=7Z
e 7:Y=X
* 8: Y=Y
* 9:Y=Z
X=exX
* 0: exX=exX

Coordinate Systems
Unsigned Coordinate System

X=1
Y=2

7=0

Signed Coordinate System
X=0

Y=1

/=-1

Z. can be seen as 2 (infinity crossover with E) in Signed
Coordinate System; how could it be 3 in Unsigned System if 3 is
not specifically an infinity around here, unless it’s Decimal
Coordinate System, which is particularly not Laegna Number
System! Z can be Y square very well, such as a value symmetric to
YY or YAY, which as you see have the same number notation YY
with symmetric digitalization, because position of Y in YAY is
definitely before position of Y in it, respectively pointing to 2 Y’s.

Logex Ten
Logex is a Logic Machine and for it is Ten and Tensor given here:

Logex Tensor:

In brackets of Names: optional letters (implement full syntax of alternatives, such as “/”).
Multiword names are allowed, which is IDE linguistic modification and Al meaningful analysis to
proceed with that, foresee that and junk-analyze, clean and stylify the results, optionally or
potentially by user confirmation, fix them.

Interface Tensor for Tensor(s):
 Input Portal: Map of Combinators (iterate combinations)
© Callback: automatic gradient backpropagation
* Receiver Map:
o Input: from Input Portal
o Custom: Integrator receiving Combinators

= Integrator: receiving Combinators; executing Tensor
Database

Logex Combinator:

Interface Combinator for Combinator(s):
* Integrate list of all combinations given, which yield some

results

o Aggregator: Give if the result thus combinator, in same
but componentizable into two dimensions: the result is
what is the logecs ponegate value of this combination,
whether it’s I, O, A or E, where zero (U or reverse-U)
means it is not given in the list, or given in U-extended
listing defined by user as Combinator table header and
content item, where content is class and item is it’s class
listing.

o Processors: Which classes are working to process this
item, classes in instances in particular, but which can be
seen in class item listing. Even if written in file, processors
must remain as APIs containing enough code for files.

Logex Memory and Files

Links are either Memory or File Blocks or shared Internet items,
including intranet and “local” community as chosen by Al from
internet and local network; each File or Folder item is made of
Blocks, which can be either files or folders, visible subitems to
exter (outwards) files and folders.

File API or it’s driver or mother program can provide visible
(given the file is open or loaded as module or executed as
program, if it has any given APIs); API can be included to Blocks
or used as Blocks, given the Agile API it would be candidate for
second iteration.

Memory or File Blocks disappear if:

* They are not given to Local Database, where they can hide
their local content behind virtual items, protected database
windows, API’s and virtual files and folders; all this only
inside their item — but user can link the item into any active
listing any Block can have.

* They are not in memory listing of an active program, which
is not obligued but it can close the active listings if closed,
where calendar can disagree and keep some simplifications or
Al memories.

* They are not linked to any active item, where even folder, file
or other block can be active in this sense, files and folders
belonging necessarily to block listing to be linked.

« Database item, which is activated by block itself, including if
it’s file or folder, now not italic as already defined as blocks
and not necessarily added here.

* Memory of Program Listing can have active items linked,
including their code, visibility settings and whether they
require licences of any program or keep anything in
program’s owners, such as copyright holders or stakeholders
or head programmers of public GNU licence, who might also
use other licences for some instances of use for fair access
rights.

Databases are available to Blocks:

* Based on it’s interfaces, types and classes, block or it’s block
can connect to databases, becoming visible item but hiding
it’s private content.

* Web contains Blocks and web pages themselves contain
Blocks.

Linking

Folders and Link Targets (basically folders) are available; Folders
are containers of something, and possibly an item might by default
disappear from it’s first place when folder is changed, but this can
be changed; Link Target registers it to type, database, connection
to another thing; to move from program’s memory to file system
or to permanent database is to move into link target of this thing.

Anything can have multiple link targets or folders.

Program

Should appear in program listing, configurator listing, terminal
command list etc., each being linked by some element of a
program.

Otherwise normal file.

Block Structure

File has mother programs, which can give it it’s own resources such as having common web space
for all it’s files. If it has several, they might not share those resources with one another.

* Aggregator: Something in terms of Laegna, which would be
a type of “doemoticon”, such as Ponegate Value (Postion),
complex Ponegate Value or Data Content of Ponegative
number; in latter cases the search tree must finish with a
single-valued ponegator of a few digits which can be seen
with R=1 as single ponegative; the exact type of the ponegate
might be given or a type understood by some programs might
be given, where the type must be guessed by accelerators.

* Properties: Names and aliases, summaries, attachments (in a
folder block).

e Compression and indexing, cache mechanics: file might
allow to autocompress certain parts, others might be indexed
or learnt by an Al, it might be registered by search engine for
accessibility; the file keeps some record of this. Latency and
speed, also potential use of resources such as two copies of
itself when uncompressed can be considered.

o Links might be used, where the is a link instead, for
example a series of links referred by a web page might
appear into this cache structure, enabling autocomplete or
enabling the listing for programs; file might disappear
leaving only a cache item to restore it; calculation result
might fallback into it’s calculation score (energy effort is
reported) especially if it’s lazy and not if the result is
market as treasure to be protected by computer.

* Tasks and Missions: here, authoritative processors, web
page service providers and users in they communities in
internet, could see tasks and missions this piece is doing:

o The block might have requests: it has data blocks, but
those might have no information or low-quality
information; it has requests such like fill this thing with
this information or update the version, for example
calculate to more digits.

o It might serve promises, for example follow a promise to
fill some information box to provide certain input to other
user in the network.

o They have karmic conditions, such as certain calculation
might have always provided something.

* Generalizations and tags:

o Tags might be assigned (item is appearing in the tag list)

o Generalization to it’s Interface, Class or Itself: as text
for Al or interlinking by implementing one API in api
language of another, things might be generalized.
= Tasks and Missions are generalizable: it can be

identified, if they are partially the same (shared resource
would have more resources); it can be identified, if the
same Al student, which is autotuning itself, for example
a single weight matrix, would consider to use common
understanding template analyzing their slightly different
APIs based on same models, and thus being able to
inspire one based on content of another; this might
provide shared context.

o It might belong to chapter listing or file listing of
collection, which links it into generalization as member of
a book, movie collection, award set or for example an
official art of a corporation, such as being a national city
flag of some city.

* Reports: How much space it takes etc.

* Headers: Can be index of a text, list of files in a file
container, row and column headers for a table, level list for a
game; main block “Headers” (can be styled, but not removed)
would give access to available content, but other containers
might be available optionally, such as configuration, terminal
commands etc — they are able for back-references, where a
link might define a backlink, and when something is linked
it’s backlink would indicate this, or backlink such that if
something is referring to it, it would backlink this; backlinks

can appear as link containers or file containers (generally

called folders, especially if part of accessible folder tree).

© Headers link to their content, most trivially text headers
link to titles and content like paragraphs, a book collection
might link to book files inside

* Types: each program can assign a link to type holder
claiming that it’s type condition is met, or issue that while
having condition flag, it lacks the following criteria

* Memory: Contains data, such as images and text

* Container: Contains canvas, for example multi-page, sheet,

Universe with invisible background, 3D space.

© There can be multiple contexts: it has the desktop system’s
window system, program interface and template of paging
system for it’s actual content container.

© The book might have pages, but it might have continuous
space of web page, where it might have sidelink container
for titles and content listing, but it might appear on blank
pages where simplicity and elegance is added; additionally,
the printer might mark the colors and filled areas as
expensive resources, where graphical content is simplified.

e Actors: List of active items is given and they have karma:

© Where did the solution of one block helped another.

o Where the user did get help, for example it was in focus or
used or given positive feedback.

© Doemotions are marked.

o Network of users is automatically sharing information and
solving common ideas; in listings the interfaces appear
which thus prefer certain solution types over another and
include the standardization items, even to synchronize
multiple groups the user belongs to. Databases, which are
actively updated by the group, are also preferred by the
group.

o Actor has resources and sustainability sources: it might
have advertising space, advertising target information
access, synchronization of such with other programs, and

the services it has to sustain with advertising; for example
it’s virtual block backed-up by cloud provider; it uses the
general advertising driver of OS showing some allowed
advertisements, and keeps up group belong of those
information providers and their generation of revenue for
the access providers; it also knows which users are actually
buyers and get the real karma with advertising, or which
ones might have been the influences based on their timing;
or any anonymous source of information they have access
too such as general summary of topic in Chat Al.

Interfaces and APIs: Allow to access this with programs

o Interfaces and APIs are blocks.

© They can give keys and related identifiers to programs or
other blocks, and make this visible or visible to some.

Identificator: Active element, which makes sure different

programs, containers and web pages are synchronously

seeing this block as unique element or contained in unique
element; it is able to use web page access or other named
element access to prove with that element; such as cityzen
registry in internet.

o It’s able to see it’s address.

Identifier or Key: public or protected accessor might appear,

being able to protect itself in local computer, internet etc.

o Contexts: Identifier holders might provide contexts, for
example the container folder or file must necessarily have
an access to identifier; for example Al is able to see an
advertisement.

Templates and Type Holders: Programs which provide type

to this file, or it’s templates

Resources: From mother programs, other programs,

websites or user, also the load balancers, access to resources,

such as memory, space, processor time, hardware or software
or tools with API such as IOT could be accessed.

Virtualization: By API’s and how the internal memory is

accessed (active interfaces), block itself or it’s contained

blocks can be projected from a driver, not existing as mere
data structure.

* Databases: providing APIs, Interfaces or logically belonging
to class

Screens

* Laegna Computer Central Screen — In center, there is the
big screen. Other screens are the same by the side they are
connected with it, but otherwise smaller in the length which
appears to outside.
© Time and Space

Time and Space have to do with organization of things in

Time and Space, and while they are real time attractors,

they can provide information of space and time in physics

system, history and travel maps of pirate movie you watch,

or any other organization of tempospatial space of Laegna.

= Top Left: Calendar keeps undo lists, version control,
memory, generalizes and connects it, for example to
repeat an operation in different way. Variables, files,
blocks in general contain concrete or general
information about their history and the sources.

= Top Right: Map is mapping the information and able to
show the same or related variable spaces.

© Dynamic and Static Information

= Bottom Left: Mathematical System is able to detect
variable content of words and numbers, mathematically
analyze and provide mathematical solutions to
everything focused or around or available in general
form in the wider context:

It keeps track, where variables come from: for
example, 3.14 might come from pi, the current state
you copied might be result of your given calculation,
not a mnemonics which can be served by this, and
what you entered, again 3.14, might be pi as well or

an operation with a number you got from computer
yesterday.
= Bottom Right: Dictionary and Page container has the
API’s, Interfaces, Summaries and Definitions of the
main block and the blocks of information contained, and
where the user focus to which is the active and most
probably dynamic item of each screen; with Dictionary,
one can create the program listings — write active
programs to this container, where moving from memory
(working, visible) to hard drive (slowly processing over
weeks) is not noticeable in terms of how the program is
processing — both have some available processing power
and space, and when computer is sleeping sometimes
it’s not hibernated but dreaming: using a good time,
when it’s not disturbing anybody, to process the items
frequently for some time.
© Windowing system
Windowing System contain components associated with
applications (but not the documents), window interface and
the operating system, but it’s less concerned with the
details.
= On Top there is acne, the Window Control System,
which can contain “Laegna OS” and / or the program
name in large, icons below this, and the chat input box
above or below the icons where the user gives general
commands in English or their native language to control
the general environment, interact with the programs and
run their tasks, including the ones hibernated on hard
drive, which have an active component such as
participiating in generalization of listing used by
runtime, such like “3D graphics is allowed indeed by
this inactive driver”.
e User can set modes or tasks: “working”, “watching
movies”, “connect two text editor windows
translating from one to the other”.

= On Middle there is the main screen, most actively
organizing the running programs; for the Canvas (simple
and elegant with no buttons, borders, window interfaces)
or coupled Canvases (copying parts from one file to
another, controlling this window with this chat), or
movie or computer game again taking the whole screen.
Other screens do not seem as “percents” of screen space,
where they take actual space but make the border still
very physical; they can still provide helpful things to a
movie or game — upper screen it’s name in it’s own style
and elegant fashion; history and map might be necessary
for game or the movie; they can use toolbox or design
box, for example 3D appearance control and change in
some elements or selected parts of movie to watch —
without extended information, such as added 5 min or
introduction by author -; the game might have terminal
or chat, dictionaries and math as well, where the movie
might allow to understand things in terms of math or
contain dictionary information like place listing of the
movie.

= On Bottom between math and dict there is Terminal,
where there is the textual commander, log or any
program able to use the terminal; it might contain
graphical elements, but those wont disturb the flow,
scrolling and availability of text, visibility of it’s
controller and the absolute optimization coming from
the speed of such format.

o Canvas Control System

You should associate the buttons, available program and

control system with rather Canvas for the content of visible

file, which could switch the programs even in real time,

having multiple display API’s, or become on it’s own

being view-only or having internal editor of some

elements; while Canvas has it’s drivers linked to some

programs, it’s the main visible element and not the Canvas

itself; for example, for Server the actual document is the

list of processes it’s running rather than it’s abstract

instance, which might be not so active, being a lower-level

program not even to be accessed so fast, if this matters.

= Left: On the left side there is display editor (Toolbox,
can be named Edit or Editor), constructor such as the
Toolbox in visual ide for the programs; while the
Application has registered certain buttons and tools, an
add-on can add them; user for example installs specific
effect into OS and not the program, appearing here for
compatible API’s such as being a vector drawing [of
given standard]; then, from here he drags the button into
support system of this canvas, and user can apply the
effect in this mode with this file, whether or not they
have the program running. An Al is enough to
synchronize these interfaces and their associated
interaction, such as the program might set it’s navigation
system such as scroll bars as optional and selectable,
possibly by the AI, when user installs a navigation
plugin for only this Canvas and not this Program.

= Right: The Design Tool (Styler, can be named View or
Viewer), mainly Designing the Canvas appearance — but
the program is not Styled on it’s own, but slave to the
Canvas in this respect; for example if you watch a
Christmas card or a Christmas movie, but the viewer
and the movie player are expected to apply their
Christmas theme or an AI might look for a Christmas
theme for theme which is otherwise compatible with the
current style so that the interaction is smooth.

Command Syntax, Paradigm and Running Order

Variable:

e From it’s introduction, where OA will set it’s preview or
preliminary values visible in gray or distinct manner or with
warning, to IE where the results wirst start to be safe to be
used, later they are precise or in future they are the actual
results for the estimation, where the feedback can be given.

* It can be Tensor: There is list of parameters, which have
optimizer APIs as well for different use cases, and they can
be linear digits of continuous number or form a discrete set of
combinations, which have unique properties each and cannot
be generalized into linear or exponential system. Tensor is
very well ponegate: it can have input for default, which is
used if it’s current content or content in one of the processing
units is not better; it has access to dictionary and map and
other elements of screen, either to their physical device or
that aspect in local copy or fractal.

o Tensor might be tense about where it belongs

It can have Strict Type: either limitations, where some
values are not allower, or boundaries, where all values must
be in given scope; it has also the “rebels”, which are added
but not following the type — for example unusual exceptions
might be passed through; we are given that computer is not
completely against exceptions with Al, such as fixing the
HTML of a web page is most typical classic example, with
it’s goods and the problems.

It has metaphysics / retaphysics: if it appears similar to
some other variables, common space for Al analysis appears,
where R is able to contain both T’s or their generalization,
being domindful.

Assigning and Commanding

Well commanding ..well, it’s so:

* Blocks: Blocks are run as infinite cycles anyway, but once the
variable is known the cycle would pass.

* Subblocks: They know time in several directions, where they are
after or before things in their parent block, but after it in the Y
dimension of time, where they go inwards in fractal; where when
running down, variables report back by circle through V, but when
going inside this function call raport, what they report back to
where variable was defined or first used in the same instance is the
fractal compression of the information, where the last leave gives
the content block, and the caller tree becomes the title system or
structure of headers and subheaders, each having it’s feedback
content available as immediate content of this chapter, not it’s
subchapters with local-chapter-style counting also from below, of
it’s callers.

Open System is Open Minded: 1 and E are not complete, but it’s
forever sending it back.

Seamless to Hibernation: in Memory, the whole Container is
created, and it’s activity is the Focus Mode of the content and it’s
controller, such as the Database Research Element is active and
focused when user is displaying the window, but focus is not zero
when the program is not run. Anyway, when closed, where moved
to hard drive from program memory means it was linked to be real
file, but this can happen even automatically with drafts — in it’s
virtual condition, it sees no variables or structures disappearing,
but when it has more working memory at runtime, it needs to
carefully move some elements to “cache”, which means to
compress, to leave as a copy to server or to trash them to be
deleted progressively of files used in the past; so it might not have
more access once it’s trashed, it’s own link which might not be the
link of garbage collector. In each case, some memory is left and

the processing environment is systematically visiting the elements
given their karma — how much they score in general progress of
solutions or the user solutions, where one program might give
useful data much earlier or some internet friend is to be used in
sense of their computer generating information based on their
files, where the content is anonymous such as selection of
statistics of rabbits in the area.

Imperator

Imperator is Time — in sense of time, the programs run from
backwards to forward.

Even logical variables follow this course of calculation.
Program lines are connected when future line uses information
from past line.

Controller

Time is controlled by Timer or Controller:

It contains necessary lines to contain in your controlled
block, where controllers might be synchronized or
communicating, for example the resources; it might say there
must be switch block.

o It contains if block, where one selection means one
function would be called, with other selection other
function would be called.

o It flows along with this, and it checks that either functions
are called where it’s interface is registered for given object
or environment of similar interfaces, or it might demand
meposetive proof or any other criteria of this being the
right timeline to align. It can receive hints about which
ones would be followed.

* It contains the criteria you have to pass; for example OpenGL
structure must be called in specific order, and so the
Controller would associate the controller with the order for
you, even if you could physically write them in random order

for example by syntax, not fitting the begins and ends
immediately.

Logos

The Word is the Logic. Associate the Magic with the Logical
Paradigm — here, the mystical experiences might appear.

When logical variable is assigned, change in the value might be
acceleration, reflected in calendar and the map (to keep the same
position in some instances of recognition by history, or to move in
others where the social space might change for example).

The letter V is used in the general sense — it will give feedback in
the other direction than the passage; with U and V one can control
the progress forward and back, where passing U or V coordinates
would shift the system up or down.

Commands: The Imperator
Logex machine works under imperative control, which means:

* Any order of commands and assignments or variable checks
are ran in sequence, where the last assignment also would
change, what is expected from an assignment and how the
relations with other variables are considered; change in the
same variable would also change it’s coordinate space — what
is expected; so if R would be lost compared to T, after the
long run logical error might be encountered; while where you
directly change the variable value, R would follow and the
approach is the it’s the right variable; you might change a
conditional along, such as Time or Space coordinate or
position in a list, a static Metaphor for spatial time (not
towards better, but towards around, which is the space
against time).

* Variables can change values.

Exclamation mark: !

Code is written in sentences. Either programming system or an Al
would take care of the sentences, where first is looking for ordered
sentences and the latter is looking for unordered sentences, which
are not already considered mistakes, and is handling exceptions in
normal-looking statements or mistakes in what looks like broken
statement, but is not language joke for example. Jokes are
perfectly allowed in code to test Al capabilities for long-ran
scenarios.

Exclamation:
given that Prolog style is used, the same variable is assigned
twice, where the Prolog variable name convention triggers:

* A copy of variable name in header treats this as a variable,
and is given the small-caps style.

* A copy of variable name in header treats this as a constant,
and is given the big-caps style.

* For the instance when prolog interpretation is turned off, it’s
used with proper case.

* Acronyms and one-letter variables are handled properly, so
that the small-caps and big-caps word are left and look
normal, such as different acronyms such as CIAKGB would
normalize — CiaKgb (two famous acronyms I use, not that I
would refer to any association with my programming within
this or without, as Bruce Lee said — “without” is an
interesting word explaining Laegna “ex”; without
connotiations to Bruce Lee indeed).

* Otherwise, for example $ symbol might prefix the earning
variables, which are to be altered; in case of simple
assignments with no special meaning the clarification is not
needed, for example “a = b” might assign b to a, not vice
versa.

Logical statements: a => b, where b would follow from a, is
imperatively seen as b = a, where value of a is assigned to b
logically by given logical statement, which is thus treated as equal

allowing one to do math and optimize variables by “<=>” which
in turing context understands it’s acceleration or decceleration and
shows how it’s optimizing away from the value once the seeming
optimizations have been ran.

Define property to Sinus function that given the value of A, in
particular case sinus would be seven (an unseen, definitely rare
case in actual world we know, but perhaps normal to somewhere,
out there in the depths of fantasy realities such as Alice in
Wonderland, where one cannot be sure, as Russell or Descartes
would teach if considered in magic realms of mathematics,
definitely out there one day along ones of those 1.(0)1
probabilities, where infinity of zeros might limit this out and
destroy the last 1, as it’s equal to qualitative difference in 0.(9),
where the missing digit “1” is constantly virtualizing, but then left
out — in Laegna, indeed, combining such impossible number is not
so trivial, because would it matter — series of “A” is guaranteed to
flip off according to the rule of it being a limit value to U, and the
rule is stated and summarized):

sin(A) = 7!

given that A = 7, sin(7) would now return 7, overriding the
existing function qualities, even if the rest would work; using the
approximation equality also allowed in =>, basis for = in opposite
order.

Sin(a) = 7!

given that sin(7) already equals 7 as we executed the prev
command (just imagine even if well it’s not good literal tradition
to surprise like that), this would assign 7 to a, which is told to be
changed in a way that Sin(a) would equal 7.

Nature of logical statement sets their value based on symbolic
representation, and links back to original to make some miracles

with comparison operator, which would not trace back based on
general case even if it should, in some cases, and to answer the
logical explanation; it’s a magic trick as it rather works by
mathematical synchronicity than any solid rule — if the callback
exists only on paper, the program might fail and the paper must be
given, then, which is very important in case of Turing’s Halting
Paradox, which is a little unfair to state that the relation must be
hidden, given that in mathematics a trained policeman or a trained
and fine-tuned Al with gradient backpropagation would be
expected for that in the real world settings, but the initial system
should be directly aware of some relations not in the testing set vs.
training sets (in overall, why to not use U for training and test set
verification, and not have the test group as Laegna does not want
such loss in the information in the end, even if in the way it’s good
to evaluate algorithmic parameters and find a balanced set, until
when it might be “Latin” or involve the test groups).

Assertments: The Logos

The Logos eternally exists above Space and Time: whatever we
do, the inevitable logic will meet us as stated in the mathematical
description of Law of Karma.

Assertments:

e They are considered in order, where the output of the last is
good input for the next.

* Where the value is explicitly changed, if the rest of the values
change in relation to their control set, and the implications of
it have also changed their values along with it’s
considerations, and where the control variables such as
calculation Time and Space, given as R values for this (where
lists and dictionaries can also have one focused element,
where we might need capitalization other time — can Al, with
some basic considerations, separate between set-element
distinction like R and r, where R might be mapped so that r

represents a combination sets of cases of belonging to R, and
proving rules of found linear cases or their estimations).
Logex feedback is generated if there is change in the value: it
might be asserted that proper is to give a certain value back to
the future value, such as R[global.time=50] = Position might
state that at Turn 50 in MoM or Civ-like turn-based computer
game, certain logical statement as referred by R must be at
Position, thus a positive assertion or assurance, or
expectation or trial is set for R to be positive at time unit 50.
Sets, which are related to this time unit, would have variable
r of property R always set to this particular time unit; then,
while treating the Prolog names as generals and particulars,
the Logex system would indeed refer to class description and
the selection group for optimization or evolution, which
randomly happens when trialing the possibilities with Zin
“meditation” of computer or actually random chaos, entropy
of all variables or intentional entropy — the R would be also a
generalization of items in R, and based on r mapping of
selecting an item, such as “UUVV”, from dictionary, where
V refers to digit values of the same variable in external set,
where it’s sometimes assigned something, assuming that
unknown digits point linearly in infinity, and the unknown
resolves based on other properties where this unknown is
effectively invisible by philosophy; U is expected to be
resolved later and the variable map balances and integrates
two separate values, keeping this to be the database structure.
Frequency would raise: the variable space itself, along with
value, would shift up and down in frequency, which means
the positive quality the variable has — this leaves trace as it’s
considered to be similar to imperative assignation, where
time is the imperative, not to say imperator; which explain
the imperative paradigm as pure logically, the time does not
exist, but is a poor emulation. Time inside logic exists: T
finities counting the operations, and R infinities measuring
the qualitative progress of their execution, where the result of

calculation feeds back to solution set, where negative or no
execution removes it’s _meaning_ afterwards unless it’s U, a
trial for given set, where it’s then Z value above treshold yet,
but part of normal distribution by it’s essence and intent —
exact U value can be _intent_, you have only possibilities but
by producing right balance and feedback, leaving each
situation and word open in the right word, is the pastes basis
of your past — “pastes” is combined like “antes”, meaning it
used to be past or rather that in past, it used to be present
(generally the opportunity to leave it open). So, since it’s an
imperative, while variable is changing, so is it’s space and
would it change back, it would leave a trace that in some
scale it’s still moving to the future, even in some projective
space we would shift back in time and remove it’s

consequence or support it’s position consequence. The
variable, at that frequency, is now having new value.

Proving and Probing

In addition to Imperating (the exclamation, change) and
Communicating (the period, “logos” is the microworld or the
world of words as atoms of communication; I associate with
“lego” and “legos”, which is sometimes my better word and
associated with Women logecs, while the standard logecs is
perfect for women being not very demanding on original throught,
but “legodriad” is the long-term association in “eq” the emotional
world, where one does “iq” operation in regards to infinity but in
equally irrational basis to a thing such as matter, because emotions
also do not have particulars; emotionally, things like magic,
emotions, religion, ethics or sensitivity and compassion can be
understood as they all work in the world of ideas, and their exact
behavior depends on the extent the idea world can influence the
reality, where the magic is actual only where the real world
decides to follow that particular symbol or archetype or mental
construct, thought in case of thought power T such as hermetics;
mind map in case of mind power R such as religion or buddhism

in particular, or social case E — E is also the plurarity like E, R, D
and other infinities). So we are going to communicate.

sin(A) = 7.

This here, and unfortunately the previous commands now are not
ran, where I also don’t meet the stability no; but indeed the sin is
now configured to stay reflecting with A with value of sinus
function changing along with variable A, which is perhaps even
less probable to happen with any values of sinus in the actual
entity of the logic; but perhaps sometimes you don’t want the base
math value, but value in regards to your local coordinate system
where 7 might point to actual value of the sinus of the functions,
which are immutable or invariant to your coordinate system
change of *symbolic system*, where otherwise for example you
might have no values at all. For example you come so close to the
numbers, and you say you have applied to projective space
through a matrix.

Sin(a) = 7.

This time, Sinus function will remain constant, but where the
actual value of Sin(a) would change, for example in terms of R
multipliers such as Sin(a) = 3R; indeed there is something known
about R now — in case R is rigid, we don’t know what to do and
some kind of error or confusion to be solved by an Al is
necessary:
e Another time it’s not a fairy tale or middle of chess game so I
make up the rules now you did need in advance, to surprise
you negatively but it’s only a science: @a would define a
symbolic map, where @a is a tensor whose type can be
given, certain values assigned to be guaranteed by it’s
interface or implementation where an interface won’t meet
it’s expectations even if probed by certantly conjecturing to
assignation, which gives posetive and looks for negotive or

it’s “deeper cause” in this sense, distributed to logic and code

irrationally and provoking the basis for mathematical

synchronicity to arrive once it makes any sense at all in the

logical and the real world, where it’s destined to pass trial and

error if failing the conscious thought and logic — we should

have gradient backpropagation here.

°© @a=7

o R =2 + @a// notice while R is constant, but not in regards
to @a which is symbol not value — when @a is changing,
the implications change but if they contain symbol and not
real value as part of it’s configuration, for example the
variable is simply optimizing to have more digits not set to
zero, for example starting with 70e10A700 000, where it
takes time to pass anything into the quantum preciseness,
or it might straightforwards rule it out by imprecision of
available data, for example about the future involving an
unknown event or several successful strategies but each in
it’s own future set case, where we prepare rather for
general life than our own specific story — perhaps, an
enemy appears in our equation, and walks only in
direction of our fear or worse, our visible fear — whatever
we choose, we get not, which is the antiparadox or self-
fulfilling prophecy.

e (Calendar would register the feed-forward, assign a forward
direction to this variable, associate them with past priorities
associated with tensors (such as @a in our previous
example); system of forward would generalize it’s feedback
into a model, which can be used by source to get closer to it’s
solution; being able to get it’s virtualized input as compared
to the output, and assigning the correcture, or generating
output and getting estimated input. Let’s call this probe-
forward.

o Probe-forward:
= A tensor system, involving tensor and weight matrix,
registers it’s combinators or data probes, actors

containing requests to grow in precision and
accomplishment to actually verify the level of
randomness, where non-random gives failures of failing
certain expectations of opposite decision of belief; this
returns from overfitting perhaps. The feedback system,
given 20 static answer with 5% probability each,
connects not to real answer but to probability map of it
generating given answer, in current sequence, to the
question; for example it might know it does not want to
repeat the answer unless asked directly or having
different question and when talking involves price, the
fresh or repeated information in answer, unlike the
triviality already understood and experienced intuitively
at least; if it’s not U or unknown, it would feed back —
here, we can see where we could actually meet the value
“0”, for our original question containing “O” and “A”
counterparts, a yielding solution; where “0” is told to be
achieved in logical system by not doing any of addition,
multiplication, subtraction or division, the code blocks
would not fill this position even with space, which
would separate it into words — then, the current digit is
set to “None” and even not to “ “, which is a space and
means an infinitely-long separator of sequences, where
sequences separated by spaces have their own infinities,
and spaces represent then the actual infinities *between*
them, a circular logical necessity to enable the existence
of spaces, and it’s practical usage that we rather need
words and number counterparts of first-level matrix to
have their infinite containers, than being simply
separated by infinities in unknown manner by unknown
theorem, where our numbers reside on axes not having
this coincidence of improbability by definition unless
we meet it in measurable scale.

Summary: tensor connects to it’s Reason, or connects
it’s situation to it’s Cause like recognizing to optimize

similar situation based on feedback; for example it can
reach to similar input condition and alter the weight
matrix with considerable consciousness of it’s actual
unknown, and the process itself is balanced by
metaweight matrix to properly conclude the feedback in
future heuristics. For example, based on generalization,
multiplication would actually strictify the exponential
function where it ends with exponent function in a
constant space.
o Al can fact-check or feed-back:

= Once the prober has established a module of it’s probes
to another Al matrix (I call tensors and weights
combined a “matrix”, as it’s a multidimensional matrix
by it’s properties in some projective scope), it can
generate probable questions appearing in work of this Al
at the receiver, or the code controller it has instead of Al
or the symbiosis of user, code controller, dynamic
feedback of scripting code, and the Al interacting with
all of this.

= When the source Al working with open questions of our
self-referential Al, which has an open fact or open
weight matrix or model structure of how to connect it’s
information or a general description of it’s intelligently
fitting model, even if it’s not in runtime but in file — the
files, containing code and actors to promote this code
into a hibernated function of non-zero degree experience
in the thermodynamic system of code temperature, the
temperature of the code is not zero whether it’s in
memory and registered in program uptime, or whether
it’s in file system, registered to OS process, Al analysis,
tasks and open problems; simply by existing it would be
able to process it’s situation and provide something
somewhere; it has it’s local code and special access to
it’s mother program, which is sure it’s it’s actual
structure it’s able to provide with answers.

Summary: an Al is able to control the tensor systems,
which want to provide their sources with information
and keep it accurate and updated — it does so by having
their potential request map, especially it’s history-based
generalization, it’s interested in such aspects or
distributions of past interests, and it feeds back the
gradient backpropagation data to form a
backpropagating model to improve the past results
without direct connection of being the same model.

= Generalizations: Structures appear of specific actors
and their associated data probes or solution set probes,
and along with the variables and axes, these are slowly
processed by the Al to generalize them into question and
solution sets.

= Inspirations: an inspiration set can hypnotize the Al,
where it emulates realistically asking questions dictated
to it, and responds with weight matrix optimizations
approaching it’s free-willed optimizations where it’s
asking questions more or less randomly, by it’s own
intent and temperature, either cold or hot. Feedback
variable would then hit it’s target.

= AI optimization generalization: As it’s working in
hibernated mode, where even another not booted OS
could still remain operating through it’s public API to
file system with low-need optimizer in another OS, for
example other Laegna OS version, the thing described
here simply enables the optimizer: tensors and the
feedforward-backpropagation cycle is not part of active
model in memory, containing the tensors, layers, weight
matrices, but those are contained randomly in filesystem
and associated, and able to update their systems such as
24/7 news feed for program with some activity
privileges having it’s source configurations distributed
to random folders, but market as having real-time
property such as 10 minutes of 1% activity per day,

where it understands that it needs to balance it’s
resource need and help others by creating intentional
differences in calendars.
o Social Al

m Interests and tasks are in files, and AI’s would form
something cloudlike with systems based on trust; they
might have initial lists such as trusted people in their
party or company, to be in cycle of given private
information. It might belong to world-wide
communities, which, for example collect open questions
in physical simulations necessary for you to balance
your combinator into smaller number of trials, they
would generalize the open questions by operation of
Zen, finding a simpler web of balanced combinatorics
while not trying to achieve the precision unable, and
finally the network of computer would give generalized
answer and feed it back to the source.

= When answer is fed back, like in the last paragraph:
backpropagation, based whether the answer finally
optimizes the original questions, as referred by local
system and it’s generalization of it’s actual questions,
estimating the interest — it would feed forward into
another weight matrix which is interested to know, how
to base it’s correction on actual questions and problems
of the user. Where real-projective comparison is used to
consider the progress of a ponegative fact in temporal
dimension, time where it would progress forward, as
evolving, where one has a system of facts spread in
time, such as questions of each user are equally
interested not that one would be more interesting like
future, and we would be bored of another user falling
into the past in this space — rather, each user exists in the
same time and now, each can pass further (“E”, position
destance) or backwards (“I”, negotion destance) or they
might not care (“V”, not reverse-U, which simply states

that U is not left but this is considered to be solved if all
the other things are solved, V assuming the current digit
is linear continuation of other digits, where the R is one
digit larger, but T is not changing it’s value, where T
here does not consider the *length* of the number). So,
here, the communication efficiency is measuring the
feedback in both directions, and deccelerated or
accelerated variables in Z and Y dimensions can contain
two persons in one variable, where the effects flows in
two directions; while the multiplicity is 2, such as I or E,
or intinity, such as I% and E%, where “%” is rather
degree T than length and perhaps position R and perhaps
A, the rather Logecal value vs. R the Real value, Real
also comparing to Left in the same way — but Left,
indeed, can be meant like “overleft”, but also in context
of leaving things to other people, which can suddenly
bring a lot of money, where R * L is much bigger than R
+ L or 0.5(R + L) where equal effort would bring equal
income. Thus, D(R, L) or R [D] L, where operator D
means their balance leads to multiplication, while their
imbalance is comparative division.

Assertions and Fact Probes
Sin(a) = 77

A fact probe: In local context, a fact appears to request whether
Sin(a) is 7. When locally, this is requested, the answer comes
faster as the question is active as long as it’s if conditions, select
statements or appearance in active for loop or active history is
considered. When other classes are involved, also in their context
requests appear, such as Sin function itself is now aware that it’s
function with this input and this expectation to output is running.

Try Catch

Sin(a) = 77!

If this is True, the function fails — you don’t want to find out this.
Use not, “!” exclamation mark before Sin, where it ends the
sentence only if preceded by connection to last character of
sentence, or separated by space from operator, which would
otherwise form another potential operator, and it’s followed by
space or whitespace, but not segmented whitespace where small
symbol of ruler which looks like millimeters in measure tape
would count from -1 to 5 segments, where it connects the words
into separating them with infinities.

Prove

The actual proving system is not here used, because while
programmers should prove their code, they do this with prover or
they do it by intuition, which is very hard to implement and
translate. Rather, they use prover like Coq or Isabelle, getting a
proven line in advance; they can plan this into future, leave it to
others, or trust in their intuitive proof and still be able to express it
in strict way, for example that given sentence in program would
participiate in mission of their client, Catholic Church, to “follow
the God”, and where the program normally, based on user
feedback, fails if the result of it’s process is reported to fail to do
so, even if it was good idea otherwise or a brilliant science
investment, based on assuming it’s now a Medievial Time where
our clients got our program from the time machine — well how
would we know, by stories of our Grandmother?

We are now happy if Sin(a) = 7!?
To be happy might be a tensor, which is actually now influencing

the program to follow Sin(a) = 7 —I call this “truth-teller”
paradox, where self-fullfilling prophecy is either good or bad: for

example, influencing the function Sin(a) to be 7 could be achieved
if people in all the implications and reasons as given to Math
system using math screen (or virtual screen on windows of our
laegna system), and conclude that philosophical and ethical unit of
Sin(a) is R = 2R!, where we move the space of R and it’s value so
that the program, inside this block simultaneously after the
statement, the X and Z time (in our relation to Y when Z occurs,
where Z is progressive and Y becomes regressive when we remain
looking it as Y once we are there; for real the same value into the
past is Y, but once it’s resolved and for all others that were, it
would be X not Y as they make 0 effort where the Y appears, so if
it won’t appear ‘cause of you the inventor, it’s Zero or X, but if it
won’t appear because of them now, as their context itself is Y
already done or planned, their value would be Z and with
downwards accents that they went there, not that they are coming
from there; with their own situation or estimation or understanding
or mistake of their doings can be symbolized using accents below
the line) where we see — if we really control the value, and the
result is not included in the reason why we do that or implying the
reason — it’s tensor which seeks the given value or the whole
situation to seek the value and decide on that is valuable, which
means the ethics or meaning is deeper, involving the quality of the
variable itself not the one given by situation, which is visible on
IE axe of fact of given degree; the self-fulfilling prophecy is bad if
the situation it produces, or the lack of the one left undetected or
non-avoided, would provide the needs, and/or if the case of
needing this and fullfilling the need, unlike the case of needing to
do some art and then doing it, but like the case of stealing a bread
because we have none can be excused sometimes to somebody,
like people in your community normally controlling the kitchen,
but you cannot excuse trashing your own bread to have excuse for
such question, where simulants would do that — an emotional
addiction or repetition of some sweet karmic condition, which can
be seen as sensory plearures or addictive behaviour, following the
secondary qualities you are supposed to enjoy rather for fact itself,

where “the goal supports the means”, where when you go to trash
your bread to be normally able to steal it, your goal is somehow
directed by supporting the means, which is contra-logic in this
known situation, even if some hard means could interfere with
goals, such as good living of some, and cancel their definition and
result — this is the AR fact, where R with this rooftop function
means that while the definition is failing, but it’s doing so on it’s
own — your evil means can conflict with goals producing the
means, while also the absolute and logical-basis rational means,
such as distance is the basis of means such as cars and walks, and
while we base on these means we would base on goal if we are
there without having the distance at all, but while it’s a mean,
then, in this chain of consequence or producing the mean, we
Negate this contradiction of not needing such means as distance
with our friends; we can see the distance is intentful and targeting
us, not followed by their interaction and cooperation being more
valuated and useful, or resolving the critical situation; critical
situation itself produces the mean and is not a goal — it’s the
karmic relativity, where the situation is the same, but your control,
preintention and success of such, would determine whether it’s
your mistake or evil plan, your success or your winning of the
lottery, perhaps a theft if you gave them all the reasons and then
your having the money is rather a mean than a goal, where you
would deserve the money; RN in any case means the mean comes
back and not the goal, through solving the posedriad or roposetive,
where these forms of ponegation directly point to this shape,
locally you see your concrete action and it’s concrete mistake, and
what you need to do — where roponegative is posegate, where I
said women don’t need much of those redriads, and driadic
fractals where it’s not even local — but from the situation being
pronegative, prone to some error in advance, the actual practice of
resolving the situation, given by authority or government, solved
in our deep meditations, simulations and complex calculations or
engineering and communicating with public; but rather to advice
people we explain concretely what they need to do, and something

in their life will be posetion thus negative, and we would negote it
thus get the positive value of having it negotiated, where negotion
needs past form — past, in laegna is Negation, and if it was in the
past or appeared as a danger impossible, destroying rather another
thing we could get from avoiding the avoidance, the Negotion
appears in our action to Negote, to Negotiate about the thing,
which is where it relates to real world. In “Legadriad” it affects
that for example partnerships break, where men accept their roles
and positions, women run trials which resemble driads in sense
that having something in the air for society, where it resembles a
court process giving a man some title in return to their long
relationship, where he would rise or fall — while he is guilty if the
woman was wrong and he did not succeed, the woman psychology
of choosing a man and failing would hardly leave her guilty,
where historically the man was just given and temporarly, the
woman might still consider the suggestions pro and against given
men, like suggestion of their mother, where the mother talks to
president, parliament, workers and engineers, the pope and the
officers, and rather finally it’s very hard to understand how they
are guilty while it rather looks like an official process; men, rather,
decided themselves about this partnership and if it did not work
out, they are judged rather practically than as if they only
represent the Mind doing just the Negative process without guilt —
this is where, for women, the Negative would become Legadriad,
which a little resembles a Legal Trial, where some kind of honour
is measured and some kind of certificate or a trial is conducted
finally by the Public and even by the Government, which is going
to watch that they won’t meet for example — an intent rarely
expressed by the men, who rather just walk away and express this
intent personally, rather than telling you that they secretly need
you despite calling the government each time you meet; where
their government can simply be their parents, but finally we see
men failing and succeeding for mystical reasons by women, where
the women would fail or succeed directly depending on whether
men hire them, work for them, or physically stop or help them —

which is not so complex and cryptic, but quite visible physically,
so the more typical “posedriad” (women word opposed as
“roposetion” would reflect the “women situation” with mens
word) or “posetion” where men reason the “legadriad”. Actual
operation behind the word “posedriad” is equal to coordinate
transformation to form OPQR order from IOAE order, where it is
not fit with it’s straight coordinate system of passing such states in
order or visibly avoiding them in both life and number system
with the same combination, not that they would go straight but
that the *resulting situation* is straight, such as OORR which
would somehow involve smootlhy solving the situation that
problems appear *in the middle*, in the normal case and not
somehow unexpectedly; where in the future case OORR would
mean that you handled all the progress and properly foresaw the
thing of the future, not pretending that you are solving it.

?! means you are asserting, but you leave the reason open as a
question, which is for following:

* This is a programming language, not a prover. Prover can be
automated to check all the proofs and to generate any proof
necessary, but this is a separate time-consuming activity.

* Programmers are asked for both proof and practical solutions:
by having the Conjectures, both proofs and practical
solutions will be applied — where a program does not know
it’s proofs in advance, it would know the proofs.

Assertions and Assumptions blocks:
Both to assert something, or to conjecture it, would set the
“proven” flag, for example probing in advance, if you reach that

line later it’s based on assumption that this thing is true.

Now, you could use them in combination:
* Asserting something means you check this automatically.

* Now, including the modules, which are Assuming it, they don’t
have the “burden of proofs”: unmet assumptions won’t enter to
your list as your program, at optimization level 0 it would need the
proof and in optimization level 9 it would fail with error if
condition is not met.

Functionality: the Functional Paradigm

We are also being functional now: the cache system, and the Al
actors, together they go on with progressively and iteratively work
on our information necessities, proofs for “?!” and “!?” and even
estimations for “?”’s in our programs, not forgetting the other
types of sentences; in case those are not influenced by output
variables or unknown side-effects and conditions (or context), it’s
visible that they can be used functionally, such as lazy evaluation
and estimation of the results, Z and Y factors where direct
computation is X, as it does not have angles in past and from the
future, as estimated and later confirmed, rejected, reinforced by
experience.

Symbols

Variables, when used with “@?”, are considered symbols — for
example, for “@a” is taken.

Consider:

Set the range of a being between 0 and 9, where example range
1245 would be number between 12 and 45 using the infinity angle
and approximity of half octaves, where digits position through
frequency map from above to below.

a in 09.

a is symbol, thus while a is changing or having different value in
a block, which does not leak the values upwards into outer scopes;

now R, for any local or global condition of @a, in each situation
equals a + 2.
R =@a + 2.

Consider that R is capital words, so you consider only all the
values of R’s, not a selected r or iterator for selection when using a
small-caps version. Each r, then, is now a + 2 given the local and
useful value of “a”, or another “a” if exclamation mark was used
to point the identifier’s name to another value, which can be
different by value even if constant without breaking our past logic.

Let’s assume R is actually a list:

Set value of R as dictionary of I's which belong to range of
possible values of a, as requested from it or calculated. Now, R
can be accessed with anything of type of a, which was requested if
“range” does not exist, trying to use it to determine the range if
any logic is available.

R[I of range(@a)].

Given this situation, when R is assigned a value using the capital,
the value might be assigned to @a to keep the program consistent.

Deduction vs. Implication

The program must find out:

* Given the variables a and b, it might turn out that when a > 7,
b > 7. This is written either as “a>7 => b>7” or for our
purpose equivalent “b>7 = a>7”. Each time one is true,
another is true, and the conclusion is given. For the
following, let’s assume one more scipture: “b>7 =: a>7”,
where it does not follow that not a > 7 would mean not b > 7,
but only the implication not the deduction.

e Given the variables a and b, it might turn out that when not a
> 7, the assumption is weaker that b > 7, but it’s not implied
that a <= 7. We use dot at our implication: “b>7 -= a>7".

Statistical logex machine

In addition to separate variables, L.ogex can watch the variable
flows:
* Statistical assumption holds in long term:

© Where a continuous flow of data or operations pass the
given condition, while their local values are random, the
general function can be decisive, for example random
numbers between 0 and 9 can average to average of their
extremes or close to this value, statistically separated,
especially over time.

o Simulative training: Simulative aspect of reflecting on
statistical case would not provide direct answer to
questions, but at the statistical checkpoint the accumulated
value would be correct. There can be different mapping
functions or hidden layers based on where the statistics
would appear.

© Philosophical training: Simulative machine for statistical
result would ask to generate a list of possible answers,
where missing an item would give more penalties than
containing an unneccessary item. Laegna numbers could
use knots, positive and negative digits in the same whole
number, to track this in a way that both false positions and
false nonnegotions would appear, where R and T would
change courses in parallel, as with negotive / negative
numbers they are not rearranged as R and T are turned to
opposite direction at the same time, thus the resulting axe,
where numbers are mapped to it in order, would not
depend on “contradictions” or numbers growing smaller
like Alice in Wonderland would rather do, but not at home
but in dreams; having R=T but different angles, the result

would be numeric scale where the interaction of number
space and coordinates in the system would be much more
complex than mere opposites. The numbers would be
closer to explain the complexity of inductive, deductive
and random, where a chain of values at different
frequencies determine the number, and they create
complex multidimension — in Laegna, finally still
equalling to proper and proportional number value.
Goal-based training: where the means are holy and the
goals are pract, the system would benefit more where the
logical cycle ends. In the answer, a mathematical algorithm
would have 10 versions for different cases, each running
different scenario for 10 input configurations; we run 100
combinations. In the end, for our more generic theorem, as
in normal Laegna philosophy of unifying religions and
atheism, we would have a single result — intermediate
calculations might not consider the variables properly, but
a special score would follow the final result. Consider the
case:
= You have 10 steps of the answer, where in 5 steps
intermediate calculations give their corrects and wrongs,
and in 5 steps decisions in relation to their future
outcomes are considered instead.
= First 5 elements of solution go randomly correct and
wrong whatever you do, so that their correctness is a
random factor. This optimization would slowly converge
to U, so that each of 5 elements, in the answer it would
pass the 100 possible calculations, but each
generalization for common case telling something, what
holds anyway, is wrong — based on philosophical test it
would at least contain the answer so it would score
some. Last 5 elements suggest positive attitude, they
consider that throughout the 5 points, while you did not
gain anything in any specific case, in the end you had
gained 5€ for sure gaining sometimes in the middle and

having a relation that if first 4 fail, fifth means you get it
from your grandfather or sister’s cousin instead of
working or getting a free gift card. This 5€, along with
understanding that it’s not the end of the world would
make the 5 last elements more or less correct, not failing
in given direction.

First 5 points are important and the last 5 points
unimportant. By logex rules, getting the first 5 into
statistical averaging, they would balance to UUUUU -
given the tensors being optimized, whatever they do it’s
U, but the last 5 are either OOOQOO or EEEEE — thus,
despite being averaged out if the first elements yield
between IIIII and EEEEE, they would define the result
otherwise and you would be suggested to follow Zen
and not complain for unknown on your way, live day by
day and expect the great fortune at the end. This is what
you need to do — not for it’s being the best, but by life
demands something from you, even if the something is
not known; you have to make decisions and thus, when
estimating with Al — you don’t measure the quality of
estimation in some random degree, but you compare it
with your own estimation or action without, as the
decision is definite Truth while having any basis is
matter of means, and not matter of Goal where you
would just reject the better-than-nothing solution, where
nothing in this case is not good.

It’s better to define some statistical actors, who are
watching the variable at higher frequency — where lower
frequencies of local dependency are out of range of the
number, sub-zero frequencies disappearing as if they
were zeroed or equated with some activation function,
the higher frequencies depend on longer cycles and get
closer to E or R; when free variables are analyzed,
possibly they map back to local variables, but now they
contain U variables — this is what we search. The

optimization might now directly optimize, if the math is
powerful, towards this value; or it might consider that
certain sequences, where it has the context of past
answers, is better than the other.

For example, in your long time plan:

For every day you generate some data whether you would
have free lunch or not.

Your monetary balanced is affected by this, where if you
don’t have free lunch you do spend some money, like 2.40€
for rice and each week some meat, living almost like Buddha
in a sense.

The local answers are mostly wrong, where you don’t know
the exact days where the free people serve free food, or
whether at your restaurant at lower floor there is some food
left by your friend, who owns the place and knows you won’t
pay anyway except for Christmas and New Year Eve, when
you always come with your grandmother.

For 5 months, each time the answer is correct: you have
200¢€.

If the days would count well, the 200€ would be 40€ wrong,
but the precise knowledge of days would make you accept
that as the 40$ would not provide quality, but little difference
in quantity in what you want to buy, for example some nails
but you can basically do with less nails and you would have
the chairs, where some random people missing a chair
coming sometimes would somehow compensate that, and the
complaints come even with more chairs as there could be
more random people. But now the 5 months lunch days are
completely random and average to U, whereas the 200€ in
the end would depend on your decisions you follow every
day, for example you could live with your grandmother, but
the free restaurant would be not there and you would support
the kitchen with little money every day or two times per
week. So, as the more important digits can not be optimized,

the last digit would matter solely, and it would slowly
optimize.

Given the right system of U’s other letters and dependence on
unknown factors, where some other program can upright generate
the unknowns to create a basic framework of estimations and train
the algorithm, having “U” used as unknown and not zero would
optimize it — use “!” for zero, but for U it would result in U! (
here does not end the sentence, but in my non-integrated general
theory of languages I use it here as limit of the digit sequence),
which means that the ultimate logical value is clearly unknown;
for V, the upside-down U you would not expect the answer for
this, but calculate how to survive the both cases, for U you would
expect to somehow resolve each of the consequences and consider
it; for 6-00mega you would define you never know in context of
your theory or applicance, and you would optimize the interaction
of the results, for example some side-effects, where the actual
truth is not known, might interact with aspects of truth in some
way; for example you don’t know whether stones have soul — but
you can know they are quite natural in human world and not
punishing you for not considering their emotions, at least in any
way you would understand for sure; so you would have some
knowledge somewhat affected by having a stone — for example,
stones on alien planet would outright upset you, for example with
noise or tendency to look like s*it, and you would assume that it
relates to having a bad soul, if they would do it really with their
souls and not be somehow born like this without being guilty —
with actual stones, usually you don’t find the actual benefit from
such assumption, so the “soul” in the souls would be something
different than what you would expect from humans if they sit
there because their soul called them to watch the moon; rather the
open view to moon is not the determinant of position of Stones
and they travel for other reasons, we could conclude measuring
the stones — we have a lot of logic now about their Souls, the
relations, without even knowing if they have one! Those

14 B24
!

assumptions might be stronger than only the assumption they have
not.

Measuring benefit and probability

Measuring and calculating the possibilities makes the result
stronger, and introducing unknowns where we can avoid them
makes it weaker — from simulation, where the Al is hidden some
knowledge intentionally, some unintentionally where it happens
anyway, and given some knowledge, it’s designed to often have
the same resulting score in each case, but out non-knowing is
stronger if we still collected the facts, and here “V” is replaced
with “W?”, or “U” is replaced with “V”, with the metaresearch on
different cases, where the result is sometimes not optimized to be
zero, the “U” value would replace with stronger “V” without any
result, where we rather checked we use other digits as we don’t
have the right digits, than relying to other digits without noticing.

Thus, we do Zin and Yen: we measure good and bad outlooks and
accord them to reality; instead of only Zen: combining with
combinations we have (we use Zen in two meanings: another one
is using balanced set of combinations, but while we do this
intentlessly, it’s the combinatorics, which comes).

You would doubt if this is the philosophy of Zen: you are told
to live in the present, and when I seem to break that, I don’t
break the case that this means practical resolution and not the
past conflicts and future certanty or good outcome, where
you cannot guarantee them; rather, you don’t reject those
solutions and they form a part of your meditation.
Computer: is active, when it outright solves your things and
interacts; AI computer has a lot of open problems and tasks:
it’s having dreamless sleep if it saves electricity and avoids
noise or generation of heat; it’s meditating or dreaming if it
uses the free time in different ways to resolve this situation

and solve the things; it’s meditating if it tries to find more
general solutions, deeper reasons, and balanced views which
fit the whole database and set of goals — the meditation is
more like Zin, if it is idle but it works on particulars, such as
certain databases; when it’s interacting with user it’s often Sin
(Sinus) in sense that the particular program is used to solve
particulars; if they are working on highest level of
generalization, they can be said creative, spiritual or ethical
depending on the means and goal of this.

So, how we measure unknown:

e Measuring the generated answers based on the long-term
statistics, not immediate feedback, we can see how scenarios
map — whatever it does in the middle, would be similar to
hidden layers. With this task given, the statistics gets better
by measuring the ends, in case the random stories generate
results averaging to such end, which might be false in case of
heavy butterfly effect.

* Analyzing it’s output in relation to leaving open, and closing
things, for example generating a list of answers, if missing
the right answer or having the other answer is minus,
especially when cumulated together, while not having the
other answer or having the right answer is good — each aspect
is on separate digits and the digits have some logic, for
example measuring the difference of lacking the wrong
answer with cost of lacking the right answer.

o We avoid generating frequencer of 20 answers and
choosing the most probable. Rather, we try to accept U’s
and generate the version, where those are correct, so that
0.2 probability case really appears with such probability
etc.

o The frequencer does not have to be in accord with the best
answer, but for example having 1 or 1 being probable
(number one or letter L), the answer would be “1 or 1”, not
the slightly more probable letter.

Function definitions

Program is being measured in sense of functional programming:
the program logic is measured about whether the output of given
variable affects the input of the next one (the Logecs
straightforward connection); in case the input is given to user and
the feedback is received (a physical, material connection), or if the
user could have the same value and use the result (a metaphysical,
logical connection) — the AT or logical system would notice if such
connection exists, or does not exist, based on it’s variables; or
whether it does not know.

Optimization Levels

Level -9:

* On this level, all the given operations are processed in
advance by the operating system, and in compile time, given
that you do not change the code behind, the function and
variable and any relation would have given it’s output into
fixed, closed tables and constant and data files or other
blocks, where the compiler would not do these possibly
expensive operations (unlike Level 0, minus level can be
used in conjunction assigning several levels, minus to lower
and plus to higher line where you need to do this in lines). In
Latin script you say -9, where you can assume “9” is capital
letter, and lower 1 would be small-caps and refer to -9, as in
Laegna from 1 to 9 we would run in same direction, where
it’s visible how the decimals are opposing their minus values
as in Latin Logic, not growing as in Laegna’s R=T or
Hermetic principles of Polarity, where hate and love are not
“opposites” and we don’t have “Knowledge of Good and
Bad”, but instead they are different frequencies of the same
thing.

* Result: an index, a hash map, different kinds of datasets for
optimization purposes, which might reduce levels in your
level O operations; if they are progressive, yielding some
truth when some digits are known, and some certanty when
million digits are gone but in thousand years, automatic
recompilation and recheck would happen and you would
include the quality measure in your program and compilation
summaries; so you would make some progress even after
your death, which is like reincarnation, not like Louis XIV
who did not care at all, but cared of the opposite! So you
could be better man than him.

Level 0:
* Variable, function, condition in regards of the operation,
might specify the need for Level 0.
 Constraints might keep it in “Tunnel of Linearity”: Blocks in
normal static language, where we are outside the paradigm of
being “static” or “dynamic”.

Proofs in Action

Imagine the following:
for indefinite loop {

A = select random -1 or 1.
B = random number
C=B

B = abs(B)

yield whether B == A?

}

After some calculations for A and B, it does not known the intermediate results, but it would reach
== A as having statistical probability, which is worse than being always false in terms of strict
truth, where you cannot decide anything neither true or false in general case.

Imagine the function definition:

Car = new Caller().

(
if (free) {
IOT.call(Car).

Throw Exception().
}

Car.succeed().

} as fun)() = {}

Here, with this kind of thing we would find the theorem perhaps for random case: “free” means, the
if is executed freely if it fits the template in Car or Caller; as Car is Caller and not Callable, and
calling is in interaction with succeed, having effect on it so necessarily being seen as they are
having side effects if not considered together (important in general case, where functions can be
defined on any sequences where the past lines are influencing the future lines, but if not the
interaction is left free and not considered so carefully, only by Al whether it exists without, like user
activity to introduce logic between them, or correlation based on untrivial fact). Without the if,
“call” would not be measured by our function, but the potential check itself makes it important —
now we *definitely measure that it’s not there before “succeed”, as it manages to give an exception
and in given case, “Car” would fail with “being a caller not callable”!

Laegna Computational Language

Now, we have the description of the Laegna Language quite clear — for example, if my Laegna
Programming Environment would be different than yours, and I might have inventions or solutions,
while yours would be Laegna Environment, it would need your inventions and solutions; you would
compete in a normal market, not implement it completely from scratch in terms of preparation,
implementation and use. 50 pages is a lot and now we return to implementation of Laegna numbers.

Implementation of Laegna Computational Language

Prerequisite: We live in times of an Al, and thus we are interested in training a Code Assistance in
advance; thus instead of implementing a single language, we target to have generators of Code,
Output, task description of this code and whether the given example fulfills the task and why. We
use different dialects to generalize to the idea.

Domain Knowledge: Laegna Computational Language is not a single OS, Programming Language
or a Dialect, or even Programming Environment. Rather it’s the language behind, which we use to
think in Laegna Programming.

Number System: The 1* iteration, which already gives us something useful, is to implement the
generation of questions, answers and snippets of knowledge for documentation, which regard to
Laegna Numbers in particular precision and not the general knowledge. Number types, definitions,
operations and values are presented and asking questions, something meaningful is expected from
the answer.

General Design of Template-like Knowledge Base: Considerations of programming language are
given, and the contradictions like “!” is good for exclamation mark to end the sentence, but also to
get the numbers into periods. We work out metaparameters of template: metaparameters describe
different versions of Language, dialects or languages in terms of Laegna General Paradigm of
Programming. For each, examples to implement particular piece of parser, either in framework
which allows to integrate with other pieces, or as a specific string processing task, which would
only find this and perhaps some other constructs given the parameters. We don’t know any single
“ideal” for Laegna Programming Language, but ideally we have the Code Assistance to program
Artificial Intelligences and Laegna Languages, where Al able to program another Al is the general
case, perhaps the propagation ability for 7 traits of life, where in future it would be more
complicated to find a concrete definition of Life and rather a Turing Test of computer capable of
protecting itself, rebuilding the material solution, another computer, responding to stimulus and
implementing more Al systems to answer the changing needs of the Environment; still we need
some particular definition of Life — but we cannot fall into only defining “emotions” or “cognition”
as we cannot physically access them nor differentiate by basic logic in logical environment;
meanwhile, we can use dolife and telife connections and favour, as life, anything which supports
life or resolves the physical contradiction of existence, also a big part of our existential philosophy
— what it means to eternally exist in the material world, as a species, and to support our personal
material existence and fluid continuation of our cause, the Philosopher’s Stone of Laegna?

Laegna Number System for Al Training

Where we have multitude of bases for Al system, we now build something robust — if we train with
this strict representation, where Laegna contains many innovative or inspirational, poetic or
metaphysical aspects, where your special conditions of your own infinities are somehow applied;
we are interested in implementing it on basis of having the basic training source for more strict
logic you are working in accordance with, and which behaves like a normalized system — in terms
of this basic system, you have some framework to explain your specific solutions against their strict
mathematical meaning.

Parameters of Laegna Numbers
Digit dimensionality:
* Dimensionality = Real. This is one-dimensional Real Number Digit.
* Dimensionality = Complex. This is the two-dimensional Complex Number Digit.
Space dimensionality (bonus for implementing Laegna Systems):
This is a detail for future implementations or advancements.
We are in the first iteration here, where we create the robust combinator for Laegna basics.

* Two dimensional matrix of lines and digit positions solves, if the dimensionality of space is
raised in accordance with size of the matrix, and where multipliers smaller than 1 would not
keep the proportions, it would give perfect results with whole numbers or given that sub-
zero space is growing and not shrinking, with more content in case of higher dimensionality
and not merely more space for the content, which is mathematically wrong in case of
comparing the spaces like cm/2 based on their simple properties — in Laegna number
system, for any operation, for example 0.5 squared gives 0.25, but you need workarounds
with real life situations — for example, consider the information content and number of digits
needed for this range, and the case that two-dimensional 0.5 is larger and not smaller than
one-dimensional 0.5; Laegna proportions use the operations often in accordance, such as
having the unitary dimensionality and knowledge of the real size relations, or using the R
property of Laegna numbers that numbers with more digits are larger, on both sides of the
whole number and subwhole number separator of positional numbers guaranteeing that
when you multiply numbers smaller than 1, the R would grow according to their dimension
and you assume that while their face values are equal, they now do a longer sequence of
influencing the number positively. Similarly, the dimensionality of a number means: in
proportion to each digit, digits it has upwards and frontwards are equivalent even if they
differ in power, and backwards and downwards digits would flow with the same speed each
(in some cases the finite position X would be 1-based, where the infinite of Y would be 2-
based, and the numbers would map with using positional relations in a way that each digit is
in separate space and each number of same size of matrix, what you can write, would be
different based on using A’s and E’s in it’s position separately — given it’s size, one would
account for finite and infinite dimensions being separate dimensions even if having equal
value, and solve real-life calculations). We can have any-dimensional matrix. Simplified
reading of the matrix simply continues to infinity in each direction and averages the

numbers based on X and Y position being the same — we follow this in what comes, if any,
since the calculated number size and correlations would be correct as much as you can
understand in one dimension, and we use the resulting numbers as face values when
reducing dimensionality — an important operation. Alternatively the digits can be added,
where each direction has power (compensate this with now not raising the dimensionality
where the unit is cm with adding and cm/2 with multiplication, these cases yielding realistic
results in simplified case).

Knots could be solved with space complexity, as the next digit at it’s negative values with
last digit with positive values repeats the behavior of frequencies — for example number OE,
given the base-2 system which does not have E directly, E would move to previous digit and
became A, where it adds 1 to O which is -1; the result would be U.

Matrices of space-separated numbers (where space is not referring to final U): take each
number, it’s length is it’s power and it’s size is it’s value — statistically, take the average with
power relating to statistical probability in a way that the influence of these numbers is weak.

Now let’s enter the dimensionality:

We don’t need the Real or Complex, but we state the SpatialDimensionality:

DimSpace: Spatial dimensionality is 1 for only real digits, 2 for complex and real digits,
where only complex digits would not give us proper numbers — we might distill them from
resulting numbers in additional operation to have the core very simple.

DimWord: Word dimensionality 1 means that we only have digit positions and their
unknowns as spaces, numbers will be written without a specific notation. Word
dimensionality 1 means that the number is separated into words, and if words contain spaces
inside, not separating. For words themselves, if they contain spaces, let’s always identify
them with “{*“ and “}”.

DimLines: Matrix dimensionality means the number is on separate lines, 1 or 2 mean one
line or several lines, where bigger number might express more complex dimension of
numbers. We might have some variables to assume certain, small numbers of lines or accept
any.

Dimension

Dimension is measured as follows:

r: Small R maps the coordinate system distortion and other point size manipulations of space
into R, and the digit space we use to represent it into T; in logex value r would be actual
space direction, and r’ the r prim would be the projected direction or how many digits we
use. We use 1 in our context to allow certain number of digits.

f: This is the virtual space of digits — each digit outside r is rather influencing the previous
digit in sequence. This might add to number power, so that the resulting digit is more
influencial with two values approaching the same direction, or it might not in which case the
overleft simply affects the number; those two methods should give same result in
comparison for most purposes if the implementation happens to be right.

Number Dimension

Numbers have the following dimensions:

* 2 or4is the digit dimension: for example, base OA is 2, base IOAE is 4, Matrix is 4 given
with 1 digit and decimal system represents 4 when using 2 digits, one between 14 and
another between 48.

* Frequential dimension: Use 0 if U and V are not accepted, 1 if U and V are accepted for
base-4 and U alone for base-2, which needs two digits to make representations I, E and V
possible in your description.

Representation:

* Digits=1: The single-digit representation, where decimals give 1-8 at specific digit, one-
dimensional numbers fit well.

» Digits=2: Each digit is represented by R and T, R contains the Complex and T contains the
Real component of a number.

Base System:

* Laegna: Use letters for numbers.

* Latin: Use numbers for numbers.
Signedness:

* Sign=2: Use only positive numbers.

* Sign=1: Use positive and negative numbers.
Capitalization (affects the number order):

* Polar: use minus and plus, with minus count the numbers from up to down. Decimal system
in our case does not support negative polarization — we lack the font, so I leave it for now
and have a simplistic implementation.

* Linear: numbers read always in the same direction, both plus and minus.

* Caps=1: We use capitalization for extended range of the numbers, where + and — when used
will reverse the digit position.

* Caps=2: We use capitalization for plus and minus numbers, where the small caps digit is
minus. We don’t use + and -.

* (Caps=3: We use capitalization for digits after the dot / comma, and if Caps=3 plus and
minus might be used, but not the dot / comma, where without Caps=3 dot or comma is used
to separate whole number and the rational part.

* If we do not use negative numbers, “+” is also not used to show that the number is positive.
Precision:

* Instead of using discrete numbers, we can have float or bigint for each digit, containing the
precision.

Full Number System
Dens:

The last digit of Laegna Number, based on 2 or 4, can be divided into Dens. 2, normally, could form
something like OO or AA, but not OA or AO; despite this, for complex R and T we would get
differing solutions; most often base-2 itself rather resembles Dens, but in a hidden form we can
know more precise values of it. We are more interested in base 4 and we rather divide it into two
Dens based on it’s content:

* Dens, generally, divide the number digits into two binary components; most trivially, for
IOAE, we know that IO is local or global wrong where AE is local or global correct, here R
knows whether it’s local or global and T knows whether it’s wrong or correct; alternatively,
being wrong would switch the value and where one den, the R knows whether the solution
was initially correct and later accepted, or initially wrong and later corrected, where the T
knows whether the correct solution was to be correct or to be wrong in the first case — we we
realistic and chose one of the two. Basically, we can consider each R and T combination —
each two-bit combination to contain complete information about four-based digit — and then
see whether they can be solved by other combinations (while binary has number of
combinators or truth value tables — as much as 16 with two and 4 with one input, 20 in total
for basic combinations — we can emulate this with only not, and and or (Bertrand Russell
has analyzed this), getting the trivial three of programmers; with all these combinations,
much like choosing not, and and or from 20 combinations — 2 from 16 and additional 1 from
the 4 combinations; for example most trivially we don’t need the combination, which is
opposite of not and simply leaves the one input parameter intact, returning without change —
this operation is mostly used in clock frequency synchronization where in high-level
languages we leave out this operation; if we would assign “U” we would say we don’t want
to have any correlation, where this could be a meaningful operation — introducing an error in
our program if the variable is not fed back *with the same value*, as found out by code
analysis or by Al analyzing actual relations in addition to defined relations (Turing seems to
emphatize in Halting Paradox that what happens if the logic is not known, in real time, but
only in essence to get the right anwer; rather, to get even worse where we don’t have the
code, it relates to the task at hand that we need an Al solution to figure out, if the data you
get is somehow based on your results, or correlating to same source of data in a way that it
would be metaphysically and relatively based on that, a claim with equal meaning in many
situations — whether the owl is singing for the same reason at each morning, why the
children come to school each morning, which has tautological structure mostly the same
with the case when children are coming to school because an owl is singing, which might
still not be true; it might have to do with general cycles of the nature, which might affect the
probability and usability as an example of correlance in the bigger scope; sometimes we
only need to know, given the actual environment, can we be sure that when the owl is
singing, the children are coming to school, or vice versa — this can have a logical
significance even if they have different reason, where we can use it in logical mapping of
coherent behaviour of our system, even if separate claims are without basis; I am referring to
classical example of statistical systems here not a random owl or random children!).

Where we have all number digits, we accompany them with Dens. Dens, generally, are used for
precision of the digits: we can define Dens in way that *where we have Dens defined* and / or one

of complementing Dens being empathized over another, the empathized or selected Dens are used
to verify that the calculation is precisely not failing within important dimensions. By number
properties, OA and IE values are separable and there exists the number quality that two forming
dimensions of oppositions of standard Dens or pairs of Dens leave each separate dimension, where
one dimension for 4-Ten number is the 4-Den number of first Den at every position, and other
dimension is the other four Dens in their order; Dens and the resulting strings are not supposed to
leak information from one to another, even if this could be the imaginary case with low-precision
variables. For an Al we should secretly calculate this to high preciseness, and while showing low-
precision numbers, we actually use precise numbers.

Confusing the Al

We do some Zin to confuse the Al so that it would understand, which questions are confusing and
sometimes, how to resolve this confusion.

* We are not giving the number type, but asking a question, which would hold for any type —
we should develop a mathematical analysis, which gets partial solutions without full
information; this is also the principle of our logical information that if different cases give
the same solution, we would get the solution without getting the case — then, we need to
emulate this to Al where it does not have direct information of what operation is doing that.

* Implementation of U: our Al might have internal support of U, where it has several
methods:

o If some statistical effect is not cancelling this in short term view for example or by other
side-effects, which are thinkable; generally, we need to generate particular information
and check the statistical compability of output with real data. This means the Z or Y
frequency is important in checks, while X is now the unknown — we check
underthreshold and overthreshold values and we are interested whether the positioning
of letters U inside our Al is capable to simulate the long-term effects without capability
to estimate the short term, in which case other letters would matter. This is simulating
the simulative environment and we simulate the cases, where it would lead to results or
lack of it when used properly or improperly.

o For non-simulation use, we are interested if an Al is, in this case able to leave the
intermediate steps out — in previous case, we check whether it feeds the correct
intermediate results simulating the random process instead of estimating; in this phase it
learns to directly provide the long-term results and their implications, causes and deeper
purposes, and omit the intermediate estimations, which might be wrong. This is the work
of our prover and we simulate the prover cases.

o For complex use, we can zoom out: where we have many cases, where intermediate
results are left out, to improve the prover capabilities we also simulate the new flows and
ask for even higher-frequency results to turn this into a prover; also we train now to
create the end results (answer general questions) based on the input several steps behind;
for example we can simulate environments heavily full of such effects to develop
combinatorics for this. Initially we use AI, which won’t have U, but we need it to learn
the behaviour of it.

o Philosophically, we can give probabilities to different cases:

® Give a short list, where the correct answer is included; correct answer can be
searched for, and the length of the list penaltized in a way that lack of correct answer
or correct partial answers would penaltize over, but in existence of it longer lists
would be penaltized, or in comparison to case of measuring list length comparing
two correctly answered cases; logic could be used to account for low-probability
answers, which won’t appear in our tests but for mentioning which might not be
penaltized unless we have statistical interest.

= Given a list, score each answer for being probable or not.

U precision

We can have 1, 2, 12 or other number of U’s and V’s, perhaps V’s and W’s for knowns, to mean U
and V digits — for example 2 U digits can count as one digit. In more complex case, we still accept
any sequences of digits with 1 U meaning half digits, in other cases we do not allow non-unitary
lengths of digits, and in some cases we allow half-digits, but not numbers which do not sum to
whole number of digits.

Values at U might mean:

In addition to extreme Z and Y, frequencies of whole numbers, by using higher-precision
digits such as writing one digit between brackets as several digits — AE(IO)EE would mean
the third digit is I0%, the value of IO when we stretch it to match one-digit length; here, U
and V precision would be contained; using infinity sign after “)” we would get infinite
repetition frontwards, and using infinity sign before “(“ we would get this repetition
backwards; at last positions of digits (we assume that all those infinities fit into our octave,
otherwise we might use two infinity signs to mark that it’s repeated infinitely, with complete
length of space or time would ideally be two times infinity times infinity, decimal number 2
followed by two infinity signs in proper writing of Laegna — this, more probably is equal to
two times infinity in infinite power, which might relate to other properties of a number but is
not very wrong in case in our mapping it would be rather power of infinity in given number
spaces than actual operation you do with it; we imagine that there exists a point between 4
and 5, we use 4! is a limit value of 4 growing upwards, whereas for 5! we don’t know if our
result is going to “grow downwards”, why I use 48 often to mark what would be marked
with 58 in it’s kind of literal or trivial sense — the latter might happen in some computational
mathematics, using simple and strict definition, but is not natural language construct fitting
the properties and anomalies of actual infinity, where we don’t think in box; as Laegna
mathematics involves larger space of operations and values, the degree of intelligent
decisions comes closer to language and is less a primitive combinator of very simple
definitions, which we would expect from having less possibilities as in Latin — we assume
something intuitively or have very long description of what we mean in current moment,
current context; rather we suppose that while discrete definitions might exist for scientific
and official work, major part of their basis can be reverse-engineered from example and not
it’s whole introduction, explanation or acquaintance with references or referred materials),
repeating infinitely but backwards, we assume the case is rather equal: when it starts from
infinity itself, repeating backwards, it would be equal to starting from here, repeating
frontwards, as it’s in definition of Laegna that infinite repetitions still synchronize the local

boundaries to be equal to boundaries at imaginary last distance; for example for number
AAE, the last “virtual digit” in infinity is E, not unknown whether it’s A or E and not A
being 2 times more probable of fuzzily, two times more true — equivalently, for number
AE(ea)Ninf the digits “ea” after comma is repeated and a is the last digit; whereas for
(OA)NnfAA, where number grows backwards, O is the first digit of infinity — in any case, it
depends if infinity of current octave is used, the theorem re-applied in every context we use
it, or if the axe is imaginary axe of direction of number (at octave One) or real axe of the
infinity inside (at octave Two, where from lower octave we would get impression that the
number actually fills the infinity).

U precision can involve:

o

Pointing to octave of U, then accepting U’s to leave open the digit, even to higher
frequency, to contain zero, rather unknown of lower frequency, or to contain the actual
unknown where it’s unknown whether it’s O or A in case of U and whether it’s I or E in
case of V.

While in “IOUAEV” we can mark the zero exactly between O and A at octave zero (the
U), or between I and E at octave one (the V), we need two digits to have the ones
between I and O and between A and E, and we might need more U’s to have every
unknown considered in more precise manner, such as the definite octave and position of
unknown between O and E — it’s value of A, by value, and octave 0.5 if 0 is the octave,
which means infinity equals U+EAinf for positive numbers from zero, EAinf for positive
number from one, U+2(EAinf) for positive and negative number on odd, and 2(EAinf) for
even number scale; we would need to add both U and V in case we have them, or only V
having only this — each time you have different symmetries for your numbers (generally:
only U when added to OA system, or only V when added to IE system, would not break
the number symmetry, and it’s hard to break the symmetry if it’s always symmetric to
contain the unknown as there would be base-2 or base-4 number accomplished rather
with base-2 dimension, and such numbers are easy to map symmetrically along your
operations; the decimal imagination of zero from Latin Latin leaves you with
infinitesimals in infinity, and if you raise the precision and do operations, perhaps this
loss is simply infinite regards to something, like larger infinity around — while our
numbers are imprecise compared to larger infinity, this should be a rounding error and
not the property of our number system itself, so the calculations would minimize the
error and not stabilize it into some hypothetical value, providing us with false claim and
unreasoned hypothesis in case we have any alternatives, or otherwise perhaps fatally to
our long-term survival and fitness).

Code Assistant Design for Laegna Programming

In modern world, the following would precede programming a grand system:

Create a good design, on which the iterations, project branches with different developments
of iterative progress, and the Al understanding of code assistance would be needed.

The AI understanding means the case is at least examplified, if not generalized for an Al,
and the basic theory of generalizations of more trivial aspects is given. We need to train Al
as our code assistant to have our theory and to be able to integrate existing work, such as
frameworks to create programming languages and provers, and relations to existing systems.

Simulated cases of Laegna Programming

Let’s call the generator of training cases a “Teacher AI”, where the Al which is trained or fine-tuned
is then a “Student AI”. The Teacher is supposed to generate actual cases of something we don’t have
at hand, namely the Laegna Programming Environment or some of the Languages and Dialects of
Laegna.

A simulated cases mean:

Descriptions of the language and environment

© The program case is modeled: what is declared, what operations will be done, which
functions called etc.

o Based on this, a subset of language is chosen and design decisions are made: where there
are tradeoffs of the language, each tradeoff would cancel another opportunity, and we
have subsets of the language, which are internally integral.

o To develop the language, we have to discuss possibilities, tradeoffs etc. We simulate
comparative cases, for example where a design decision makes it very comfortable to
implement one feature, but in turn the other feature would look ugly. We teach it to
compare the decisions, finally it could give us pros and cons relating whole paradigms
and designs, and give us advice about particular domains, and inspire us for our
language for example telling that some decisions would turn it very complicated, where
others might make it simple and still fit to our domain or area of expertise, or decisions
and habits and requirements of certain user bases; it would tell us that some
simplifications, for given user base, domain or area of expertise would be unreasonable
and rather we would like to work around this or create more sophisticated tools and
languages.

Simulations would work on the following basis:

We simulate the following conditions:

AI Student: We simulate the questions and answers for Al system; for example given a
generator we describe, which generates examples based on given rules, we know the final
state of the Al and what it should have learnt, and how to verify it’s success based on it’s
behaviour: for an Al learning to estimate and measure another, possibly simpler Al, or to
check the simple Al system itself, we describe a logic system, where we are able to deduce
the right answer, not only the optimization, but we check a system which does not reach this
right answer based on computations, in a way of logical machine, but trains it to it’s nervous

system, which has to creatively resolve the rules and might generalize the solution set with
enough examples to estimate unknown Al systems, their behaviour and perhaps the speed of
learning.

* Calculator or operation capability of a language or an Al, or calculation abilities and
understanding of the human; Calculator, while it’s a separate tool, is also a purification of
common and shared goal or ability: Math problems with solutions are generated, with tasks
and solutions being rephrased to fit calculator input and output (Like Q: 2+4; A: 6).

* Programming language and it’s execution result: (Like write a complete program to add
2+2, either snippet or with all the imports etc., and check whether the result is correct
including the program specifics, for example it might add “> ” in the end, expecting user
input, or it might follow specific formatting rules); the Al check — inputs and outputs, which
might make sense for an Al, for example a Q&A set which is complicated for user, and not
having concrete set of rules for a program, such as analyzing given business data to score it
from I to E in comparison to given purpose, mission or ideal of the company, where user
won’t work with 5SMB file of numbers, and a program might rather apply for specific criteria
than general assessment unless it already relies on Al functionality.

* Finally the user:

o Q: The pencil is four euros, but I have to calculate my money.

o

A: Agreed you need a pencil.
© Q: How much is two plus 4?

© A:It’s six, in other words you can buy the pencil you mentioned.

o

Q: Thanks this is what I meant.

© A:You’re welcome! I hope you can write it tomorrow.”

(@]

Based on some examples, the program would generate textual tasks and answers of
math, perhaps also different correct and wrong answers for the same question, or
different “correct or wrong questions” for the same answer, where the answer would
examplify the wrong answer where the question is wrong.

It would do all of the following:

* Set of tensors, tens and programming constructs form a program, which has AT assistance
included and is not strictly following the code.

* With the real world tasks for this code, it’s measured if it fulfills them properly.

* The Al would learn, whether different ways to resolve the program are good, or whether it
needs a better concept, or whether these tasks should not be resolved with this program.

Notice: The functions or classes might contain exact logic, but equations would include an Al
mechanism; for example assigning function test(x) different values, such as test(4) = 6, the function
basis might be AI, which would learn the function. Given that variables are not defined, a class
would have interface to an Al resolving unknown variables. Given that proofs are not there, Al
would estimate the hypothesis and probabilities.

Partial Emulation of Laegna Programming

When we design a simulated program environment, we are interested in aligning the following
things in our task:

The mathematical task is resolved, where the series of operations, structures or mathematical
algorithm is known; this is resolved into theoretical structure, which will contain the
algorithmic solution without exact semantics and language rules and paradigm of
implementation; the resulting action, and mathematical solution are known.

It’s known which parts of the language we need: it might be complex language, but locally
only a given set of it’s possibilities, constructs and philosophy is used. For example, if
laegna logical language is processing the logical things sequentially, looking a specific
subprogram, it’s expressions and it’s output, we might not be able to determine whether it’s
logical or imperative language — even the case of “2 + a = 4”, which is rather trivial in
logical language, could be implemented in imperative language with a being 2 as a result,
which is convenient feature.

For a language design tool, we would extend it with:
o Use cases, where one or another feature matters.

o The other features, which won’t integrate. The use cases, where it matters to lack the
other feature.

o Resolutions, where considerations require or support, to choose the favored feature, and
resolutions where we dismiss it in favor of other feature.

o Discussions, where certain feature was selected in past discussion, and then it must be
considered now, conflicting to resolution of the case given later in discussion —
developing the larger context.

When we know our partial set of features, we readily have partial selections of
documentation — we do not know the full language, but with given features, the
documentation would likely contain something similar to given selections of the
documentation; the AI would learn to navigate such “partial documentations™.

“"’

Failure cases — for example, implement “!” for limit values of digits, and for end-of-
sentence, reach the problematic case and resolve, how an Al would be able to resolve it
automatically, how the language design would be reconsidered once such conflict is found,
and how one would look for answers, which involve both constructs: for example numbers
could be written with special marks, sentences would end along with the line while numbers
would need another line feed, or the ! would mean a different thing inside operations, for
example “X = ae! + 4!” would require us to understand different solutions to problems: if X
is variable and ae is number, then why ae is not variable name or why X is not the
coordinate space pointer, and why the sentence might not start with “+” in certain
implementation, or with spaces on both sides of “+”, or why we would not think a separate
sentence “+ 4” does not make sense, whereas “X = ae!” might really be a proper sentence —
rather than only designing a language, we would think in terms of creating an Al, which is
able to run considerations, and there would appear Laegna languages, both paradigms of

general programming and languages to support specific domains or provide specific
features, such as a calculator to solve only some simple math problems.

We would involve many considerations:

For

«€» (('?” (("’
Y LY .

in end of sentences:

Some environments would integrate Al capabilities with meaningful fonts and styles, so the
number ae! would be given a different style or font and thus recognized as a number;
normally, in Laegna, numbers are separated by a font — while determining by style is trivial,
where style lacks meaningful information, but is given by physical properties such as font,
color, style, context and position of a number, an Al or the programming language would
detect this in many cases. While in past it was a bad habit to design such mess at all,
currently we look for ways how an Al would earn some money or score and do something
reliably, which we were only able to resolve at cost of complexity before. Here, we can
generate complex cases of language use with less than strict and perfect rules, and determine
whether an AI + IDE + programmer, definitely including the language, is a combination
of 4 powerful enough to seamlessly integrate the solution set of given problems.

o What we get?: every single character is extremely valuable for a programming language:
consider we have around 10 operators, 3 types of braces, a little set of letters and
numbers, two types of quotation marks — each time we use anything at all, we have
given away a big part of us, disabling many other brilliant ideas. We can emulate this all,
for example “<!--” and “--!>” would be considered braces, but we are not very stylish,
affecting readability, simplicity, elegance and efficiency, along with many other things.
Here, we have reasoned domain specific languages for example — where general purpose
language works hard to get all the operators into use, the domain specific language
might use all the operators for only a limited set of semantics, for example if it accepts
only chemical formulaes and their solutions, the general language would use only
functions and some overrides, a lot of language, but this DSL would use each of the
operators, special keywords and other possibilities for only a single purpose — where it
still tries to look like a well-known GPL, it would not do this very definitely; it might
use block notation and some math from Javascript, Go or C++ to enable faster learning
curve, but it would still have several specific and simple notations, utilizing valuable
operators for it’s specific cases, for example “*” and “+” would directly means
something about crystal lattices, where in C++ one would reach 20-letter character name
for standard notation of such purposes, such as
“BptCrystalLatticeOp12LaserInteference”, to fit your long list of other notations by
strict standard — and then, in your DSL, you would simply write “+” where this long
word is exactly what your users do every day, not a part of list of 2000 things you would
do with physics, chemistry and thermodynamics, with 4000 page standard and special
cases implemented with every available system.

We also make use of whitespace: “Sin(a).” is a sentence as it ends with dot; “Crystal

€« »

Lattices.Simple” is a property or class attribute as “.” is not followed by space; “.Crystal Lattices”
would point to this thing at root element, where it fits being a property, but it refers to some global
container or “None” container. Where “A + A” might add A and A, “A+A” can still do the same
while “A +A” would rather be a matrix of A and position A. There are more examples.

Statesc Logecs

Statesc (Stadesc, statistical table, est. “statesk™) is the Laegna statistics:

Instead of Test Group and Validation Group, you consider this as a rather special case; we
are directly interested in mathematical basis about how those two would interact.

Given all the variables, probabilities, successes and failures of the estimation; rather we
reach the solutions involving U and V to answer the general case of unstructured statistics,
unstructured input and unstructured trials and errors of the scientific method. This is our
approach of Laegna Statesc.

We have the following case:

For purpose, we have only two statistical letters in statesc, where we actually need many; we keep
the language simple and thus we need workarounds:

Either an “odd number system”, where the r and R, the coordinate system, the computer is
capable of containing numbers with sub-frequency precision, where the calculator or
computer wont have very limited set of statistical values, but rather each digit contains more
information and the number is asymmetric — normal statistics of U would give us a set of
segments we can define, and like an R-Tree they would be at specific locations; if the
variable is inherently more complex, this is not the case, but it has more values.

Laegna Discrete Number Analysis: given the set of statistical features we are interested in,
or a set of possible statistical distributions, we need to define all the numbers in such way:
given the unknown-zero invariance of number values, each number should map into
probability results as if U was zero, which would be the most precise way to map the
numeric alternative not including the statesc. Discrete number analysis means: we take
whole range of our target possibilities, and we map it over a set of discrete values, where
with digits we never have actual continuous value, but only it’s either round or symmetric
representations, unless they are pointing to whole or rational number which is the correct
result — for example if 1.(0) is true, an “irrational” by form but actually just having infinite
number of zeroes, the “1” can be used referring that this is an actual whole number. With
more typical, statistical range of values we need to map the discrete set of number so, that
what is the closest to our set of discrete values with particular meaning, maps the balanced
range of given values in the best way.

For example, with discrete analysis: if one set of number is more precise, but other set of
nearby values you can assign would get around some imperfection, which is introduced over
time, we rather preserve all the theorems and known cases, than searching for literally most
precise local results by their numeric values. For example, map that “E” is perfect future,
“AAE” means winning in the end, “AEE” means winning soon, and “EEE” means perfect
growth; “AEA” for example would be temporary success. While, when we have one specific
line of time, this does not make sense easily — if we have the whole set of our timelines, and
the comparisons, we can find discrete answer of complex timelines for income and
expenses, where comparison of the results is rather discrete, complete and quite precise
given we only do real operations with three letters — the questions and answers would map
so that our decisions are rather correct, while this is topological operation and precisely, in
other case “winning in the end” might mean much more, much later than for small company.

Frequential Logex

We have “Tens”, which are the “bit” of Laegna Logecs — the smallest, indivisible Atom, which
would still keep it’s logic. Indeed, we have a bigger theory where the Ten itself is one
implementation, but more similar types can be implemented for specific purposes. Here, we
describe the logecal parts of the implementation.

Frequential system is made of the following properties:

* Conditionally, it has a condition S — a frequential system we are optimizing or analyzing; S
means that it holds in a local condition, being a little unusual use of S but not given that STR
is a standard opposition and rather we stick with something known we plan to research
further, and this is our paradigm — exists a paradigm, where conditional is S.

* Positionally, it encodes a list of possible input values in positions of digits, whether the
digits are Tens or ranges of possible frequencies of the condition. Each frequency reflects
it’s set of possible values for it’s input variables, or they can encode the selection of
variables themselves in rather dynamic case, but we are not interested in this right now —
you can analyze your specific case.

* Frequentially, by a digit value or Truth Value, for each Position, there is one return value
set and for each possible set of return values, it can assign a frequency — value of a digit,
where digit is either ten, or complex digit might be formed, where multiple tens are
combined and an index set of states is introduced; for example we might allow frequencies
“1”, “O0”, “A”, “E” and “EE”, where we say we have 5 digit values or frequencies.

o For this purpose we implement digital systems in Laegna Assembler.

This means we have conditionals:

{
Try.
A =7!1? # Conditional
Succeed.

}

We allow “if” to be written in two ways: preceding a block, it can program a block; for example if A
=7{ ... }. We also let user to define this inside a block, where “Try.” in my example means the
program is going to try if it can run, by A is not 7 it would fail, and what follows assumes it’s
succeeded and not trying, resulting an error if it has more assertions — how you implement the in-
block controller is up to you, if at all, but I like the blocks which:

* Run forever, naturally.

* Yield values so that they can be assigned to iterator.

* React to “if’s” inside, so that they can declare the conditionals for themselves.
* Accept “break”, “while” and “until” to stop them from running infinitely.

e If they run infinitely long calculation, but do not report each pass by producing side-effects,
the loop must use proofs and conjectures to stop; the resulting variable might contain “Z” is

something is divided to reach sub-zero, or “Y” if it’s multiplied, and the block assumes to
stop exactly at the limit value of E, unless instructed otherwise — for example, if it’s going to
generate random numbers between 0 and 1, and sum them together, eventually it returns
Y0.5 giving that with precision of Y, the value is 0.5 — programmer can instruct to also
consider heavy improbabilities, such as still getting 0.6 where the randomness, in one very
special random Universe is different. We consider that not every random factor is different —
while randomness itself might be random, it’s running inside random tunnel, where the
statistical outcome can be non-random and it’s criteria might even force the particulars to be
random by expecting solid distribution; in such case, if the random sequences appear
directed to specific result, the result might not be why they appeared at all, and the nature
might rather evolve to adhere the random condition again and produce the same probability
distribution where it does not matter that the particulars are improbable by it’s normal rules;
thus we cannot safely assume that if probability is that it happens in one of million
Universes, but perhaps the probability itself, such as probabilities of human genes, are rather
not probabilistic but serving a purpose — the random factor of genes might produce a very
good distribution, and living in an universe where this random factor gives systematic,
influenced results, might introduce simply another random factor, which despite of being
still influenced in this way produces the same statistical outcome, the same distribution of
traits and life missions, or the process would change in the way that normal random factors
restore. It’s complex, which factors would produce it at all, or would it get some “butterfly
effect”, which would simply change some random events in a course and restore the normal
distribution — in your normal case, the factor might be random, but in exceptional case such
as winning the lottery ..well the man behind a lottery might not like your victory, and they
could either mess with their numbers, which is heavily described in the law, or in some Las
Vegas movie a man with the money is typically robbed, so that the random distribution
would be there, but the normal probability to win would be canceled by something like a
posetive, by the viewpoint of the winner who would now leave before extreme success — in
many life areas, rather a sad story, but in Las Vegas perhaps it’s possible to live this way
haha but it’s a grand scale why we need victories and lotteries, where maybe it’s reasoned
that some people win.

Where two infinities have relations inside their variables, we can do operations with
resulting infinite numbers. If not, the Z or Y in one or another case, given the unbound
variables and other effects, even trying to calculate further than the basic theory allows — if
there are two unbound infinities, where we know the local variables precisely but we cannot
give it the relation of the scopes, the solution is such: unrelated infinity 1 might return
variable a with unit A, and the second infinity might return variable b of type B. The result,
then, of multiplying a A with b B, is a * b A * B, where the answer is a * b and the unit is A
* B — through interaction of those variables, we can assume things about relationship
between A and B, and the extent of our precise value system might grow, but if we are
interested in Logecs value of Ponegation of a * b, we just use the literal value and it’s
properties, perhaps with some trial and error or calibrating until it seems to succeed given
our intent. This is given in theorems and methods of infinities, where the basic method is not
to research their exact values, but using heavy U-notation, Prounetons (where U, as Logex
Truth Value, is called Uneton, Ro connects it to scope where we rather research the indirect
relations and not concrete variable-value mappings, and P is supposed, assuming upwards

accent which is given if a word is normally in position, unless in context which is in position
itself) — so considering the whole I and E interaction, a theme might appear where we still
map, through L aspects of the calculation, several precise properties to our initially
imprecise system, or do the best with what we got — in latter case, we don’t even care of the
unit, but a * b is calculated by number values of a and b, multiplying, and the case that
relations are not known does not matter. For example if A is E and B is E, then A*B must be
E squared, typically EE, and we rather think that two positions are position; multiplying I
and E we might doubts, but the result fits the case that in interaction of the result, given that
our problem is real, we would notice if this is not the correct system interaction, which
follows from this answer, and the actual result would feed back to the original values in a
way that the system would stabilize. If we cannot, by trial and error or simulation of the
system, get any relation to a and b, but I * E giving U (divide, then multiply with infinity)
would simply fit our case — we would assume it’s zero or we don’t know, and that the value,
which does not give us feedback, might generally be imaginary aspect of our setting of the
problem and solution; where we don’t get any feedback it’s either philosophical matter, or
impossible to solve — latter, with Zen, is still compatible with it being a philosophical matter
to us. We are based on the case: if numbers have U, I and E properly calibrated by their
symmetries, and the velocity and acceleration relations make sense in some way, then the
complete interaction of whole system is not penaltized if it simply trusts the more general
rules.

o Consider: while in one case, I is -2 and E is 2, and in other case, I is 1 and E is 4, then if
we do not know the types, doing the operations as if in both cases, I would be -2 and E
would be 2, and letting the optimizer to calibrate the calculation to fit the correctness of
whole feedback cycle (this is either the *interaction* of the numbers, or interaction of
the system and their relations to the context); we rather reach the point where we can do
with this assumption; in alternative case, we would fail any calculations at all —
mathematically, this might not be more precise case, where we can do comparative
analysis and sometimes leave it as unknown if the systems are more complex and
number rules seem to not hold; generally, still, we have the thumb rule despite lacking
the math in particulars.

So consider the frequential system
We have two conditionals:
IfE=0...

IfE!=0...

This means, we have condition of E = 0, and all the other conditions. I think simplest conditional
defines only one condition, and sometimes you want to assure that it’s either true or false — it would
be false outside a conditional where it’s checked to give true, so it must either be checked to give
false or not used, and it might be an error if it’s used as being true outside the conditional. This
could simplify the verification of such conditionals and we now assume this:

Inside E = 0 if block, all the assertions and verifications exist; outside, nothing can depend on E =
0 and the conditional frequency would yield error if it’s being evaluated or assigned outside it’s
conditional.

Let’s say inside the condition E = 0, we read two variables: a and b, which are either True or False.
The variables have Tensor logic: they would change their values to meet Frequency of our system to
be True, to approach higher frequency — alternatively, it might seek False, the lower frequency, and
everything would work as if False was true (common situation in binary logic, where it’s more
typical that things like not Poverty are used instead of Riches or Success — sometimes it makes
sense to use “not Failure” instead of “Success”, but in Logecs we want more typically to use “E” as
a strict result for our parameter, and not map it to “I” being the goal; this way, it’s more readable —
in some cases, the calculations directly mean that to have E’s for many variables, some variables
have to have I’s or they need too many conditions to be reversed; in normalized system, generally,
while it contains non-normalized intermediate results, for the actual answers to be checked, each
Position is rather “E” and each Negation is “I”, while it’s not tautologically impossible to list
negative things we avoid and then target “I”’s — when working specifically in Risk avoidance and
comparing the “E”’s others would get, such as winning the competition, the understanding of the
system would expect E values, for example a thief might get rich by robbing you in business, and to
understand the thief you use E, but it might happen that you use upwards accent below E to show
it’s an introverted (rather intriverted as I’m an introvert), self-gain perspective, or you might use
downwards accent above, upwards accent below, to specifically show the lack of logic — such value
is straightforwards posetive, but even with some resemblance to Negotive, as the thief is not only
valuating their of miiii, a typical business value for such, but they also have concluded that it’s right
to take from you — where Posetive is their failure in ethics, but Negotive is rather yours, where the
Negotive is quite clear if, by their intention (especially) you turn to posetive as well — deeper,
Posetive is always a bit Negotive if intentional, as such intention is measuring something below it’s
level, not only “overestimating” yours — in case of successful robbery, the posetive is not immediate
effect, but happens at the larger scale of legality, where the thief might think much smaller, in their
local consequence or T, while now T!=R and this is not a contradiction in our analysis, but rather
the contradiction the thief would have — we, in our case, have to calculate given this error and
analyze it’s consequences, and unlike in binary systems where logical contradictions would require
special effort and mindful considering, where by Turing and Russell the systems would rather not
resolve themselves in such case of “True” and “False” not mapping perfectly in chain of
consequences, missing the properties of Life and Karma, where intention matters in regards to
Goals and Causes, the Goals we should have in Laegna tautological realm — actually the Cause

might be something better, an interaction with the future, ideal states and their compliance with
given reality, purposed or accidential, and it’s actual meaning to us — in Laegna Logecs, the Cause
indeed matters and our Cause is rather trivially not to be robbed, even if we don’t know all the
background and what the Nature would do — by law of imperfection, it would or could not avoid
any robbery, so perhaps nobody is listening to us).

So now we have:

Four positions of our frequential system, where letter variables ab equal to value set OOAA of four
(4) values as given here:

F=[?,7,77]

Define: we got frequential system of four frequencies. At first position, there is OO, and at last
position, the AA — in the middle, OA and AO. This means, we map from smaller to bigger — we
might want to order from bigger to smaller.

So our system might look like this:

F = Frequencer(E = 0, 4). # Frequencer with 4 positions; consider that if E = 0 is not a constant,
but E can have different values, the logical system might connect this; otherwise, we need to make
sure we are passing a condition or lambda, the latter checking the condition; rather the logical
language keeps connected with the basis of it’s values and we need to know that E belongs to
correct variable and operation scope at the moment we pass it. Definitely, to avoid things like
database ORM implementations (Object Relational Models), where one will pass conditionals with
insane syntax — I straightforward avoid some implementations where A.or(B.and(D)) would be too
much for A or (B and D). I have thought: perhaps by utilizing some form of quotation marks would
help, such as “A and B” in quotation marks could be parsed in a way that it can be analyzed as a
string, rather than by reflection to understand it’s content; even lambda, in classical case, if it’s like
a = lambda(A, B, A and B), perhaps the reflection would be weak to optimize for A and B and
instead, we would use the lambda itself in every step of database functions, where we rather would
optimize and some index would give us straight the access of everything with property “A and B”
and optimize including any other cases we have; contra having the lambda, it would do something
trivial. By this logic, it’s of uttermost importance that we can give our sentences in a form that their
semantics can be visible — given “A and B”, without using things like A.and(B) our system should
be able to get the actual operation along with it’s results. Here, we must use forms of symbolic
expressions: for example, if we write @A and @B, using the notation given before, the variable
should now definitely give access also to “and” as symbolic relation, not just @A and @B as
symbols — using constants, the case of access might be more complicated and using results of
preprocessing such as indexes sometimes it might be lost; such lost things, given that we plan not
only computer but one acceleration of computing systems at an Al era, indeed if we look at the
index and try to find it’s components, Al-aided programming language would reach back and where
index contains “1”, it would take time, but it would finally tell you that you constant, specifically
the aspect you calculated, was actually invented by this French scientist — maybe it avoids shame or
allows you to score that scientist.

So: F = Frequencer(E = 0, 4).

Let’s continue with this code, for that purpose we create the context:
a = Tensor(F, max)

b = Tensor(F, max)

Where a and b are tensors to maximize F, and max is the compatible lambda or function of
optimization.

F = Frequencer(E = 0, x, 4).

In logical language it might not be always so big issue that F is defined after a and b — in our case
we are rather interested that the cycle exists to bring values of a and b back, and the analyzer is able
to understand this by logical analysis, not that it’s only imperative. We added parameter “x”, which
maps the return value of the condition — or, in more complex case, monitors the change issued by it,
where our frequencers and tens must also map other dependencies, connecting to combinators,
which are able to account them; such that if it also depends on c, the frequencer/tensor/ten logic
must effectively allow for the scenario, where c is accounted for.

If (E=0){
x =a XOR b.
}

Now, we implemented x very fast, but we must also explain what it is: x is, visibly, a boolean and it
means that the system has two output frequencies. More often than not we like systems that have
single number of frequencies, where input and output have the same degree — this is the case with
Tens and as such, we have some math simplifications when talking about Tens in this context; for
example with two Frequencers, rather they have same shape of input and output of both, and our
terms of frequential systems have this word having one, and not two meanings. Here, the frequency
is two and four, where the four combinations of a and b give input frequency 4, and two possible
results give output frequency 2.

Now, the optimizer: if would try each combination of “True” and “False” values for a and b. Each
time, a XOR b is trivially known and the frequential number is:

F =[False XOR False, False XOR True, True XOR False, True XOR True]
Thus, F:
F = [False, True, True, False]

Where the middle values have a and b different, and the exterior values have them equal. In Laegna,
we actually have more than one XOR’s — for Barber’s paradox, we would have an operation where
a and b map to the same variable or instance, either directly by logic or as visible in trial and error,
if for example a server or user would give the feedback based on input, and the logic is invisible for
the program or the frequencer. Then, our binary table has 6 and not 4 cells, where two additional
cells: whether the variable, now a single variable, is True or False and what to do with this.

Our complexity, now, is itself like a Truth Value Table — for every input, we map the output. Still,
it’s not a function and we don’t get it as a single step, but it’s a condition; we should allow the use
of a function instead of the condition, but we need to know: it’s input conditionals are rather

imaginary and it cannot use the environment, producing side-effect of using the actual value of
something, instead of virtualization of the condition being met. I call them “imaginary numbers”,
which appear, since the condition might contradict our system and the result of imaginary case
might not be known; it’s like imaginary part of complex number — often, where real part is the
actual condition of our system at face value, the complex part is it’s operation under zero (where
sub-treshold values are rather space, and influence the system chaotically not setting it’s value) or
over infinity (where you locally have similar situations, for example many people buying a lottery
ticket, but the value of this situation depends on something bigger, where it’s not their actual value
but value space, whether it was losing or winning ticket — the complex number also provides us
with inertial systems rather than face values, and maps well with such cases even if this use is not
necessary, math is still rather an abstract combinator measuring compliance between reality and
given systems, where the systems might map it in different ways; I Laegna, as in Latin, there are
particular properties our system rather keeps — for example, we do not formulate our system in a
way that it has to optimize to get Posetives and Negotives, even if the tautological expressions,
formulated “properly”, would not give an error; effect of setting goals to Posetives and Negotives
might appear if we measure conflicting, Positional values, and rather align them than use complex
conversions and free variable analysis, componentiation and construction of actual Position or
Posidriads — women think in plural -, where we would ultimately get the system optimizing to
position; same-linedness and R=T might appear in condition, where a is opposite of b, but both at
their face values are good, for example we buy lunch or an ice cream, and while both are positions,
we also have the negotion of one if we buy the other, given that we actually want and need the both;
in such case we might use R=T where it conflicts the least; for some purpose we sometimes map
oppositions, reminding of binary systems — for these purposes, older or wiser men might have
componetialized much deeper, and think we are running binary logic where values conflict with
themselves).

F = [False, True, True, False]

This is a good frequencer to analyze:
* We have two Trues.
* We have two Falses.

Say we are optimizing this Frequencer to a Position, which is a normal case and could be default,
even not so explicitly stated in output:

* We run into truth-teller paradox, where we have several correct answers. The paradox is:
choosing either second or third frequency, while we guarantee that the result does not
depend on itself, we do not guarantee the non-philosophical case of choosing either 2 or 3,
but without considering another part of the program can optimize based on this.

* If the frequencer would not be equal to 2 (or equal to 3), it would be a simplistic solution
and many people are happy with this — in DL examples I’ve seen, often for example
analyzing the handwritten number, getting scores like 0.3 for 7, 0.31 for 1, and the rest for
other numbers, where 7 and 1 might be remarkably similar — it would choose 1 based on this
little difference and it’s constraint to choose at least something. Instead it might require user
to somehow clarify, or consider more of the context, etc., not necessarily for handwritten
digits, but for different use cases of frequencers.

Let’s see what we can consider, doing frequencial analysis:

Whether, if a selection is not true and not specified, the other selections being false would
select this one. This is whether we do deductives.

Wherther, if a selection is not false and not specified, the other selections being true would
consider this one is false, or run an equivalent scenario. This is some special case of
inductives, not running for what we cannot get.

Whether we build a probability or run for specific case.

Also consider: each probability itself has probabilities for each answer, and we could create
multidimensional frequencers based on that. Here we check, and assign this knowledge to general
theory of probabilities of Laegna:

At which extreme we could see that it cannot hold, with certanty, which looks like
deductive zone.

At which opposite extreme we could see that it can hold, where not having a deductive
turns it rather to inductive.

At which value range we can confirm that it’s of variable value, or real random, which is
dinstinct from not knowing — not knowing means if you use the feedback cycle or logic,
you could optimize for best answer by clarifying the answer towards some specific value;
the value being actually random means that actually leaving it open with all the
implications would lead us to additional preciseness, or that emulating it’s behaviour would
mean generating random values, and the values would get our test system to score
realistically and similarly to real system, running into the same problems and solutions. For
example, having values at Z and Y, but U’s at X — we would measure the subtreshold and
long-term effects and our statistics would fit; also given the probability scales, we would see
our conditions met, including some assumptions about what conditionals the system meets
or does not meet —V, as exterior value, perhaps allows for generation of proper tensors
(vectors) and weight matrices, which are able to avoid certain values optimizing away from
them; while we generate one specific answer, we might not be surprised if the right answer
still fits our frequencer.

Inductive and deductive method thus implies: for a logical condition mapped to continuous criteria
of it holding more or less strongly, it might pass points indexable i, o, u, a, e, v in such way: i points
to zone where negative value is impossible, o to the zone where positive value is not certain, u to
the zone where randomness is rather there, a to the zone where nagative value is not certain, and e
to the point where negative value is certain; v is the zone where randomness is not there. This
condition is trialable as the particular (T) and statistical (R) feedback would be the most precise,
where in many cases we can run for example, similar trials:

We are training an Al and it makes guesses based on input set.
It would guess that output set is not in a list given values.
It would guess that output set is in a list of given values.

Solving the non-probabilistic cases, where trivial rules are overfitting, it would see it’s not
the non-probabilistic case, given it’s power and the known input data, as probabilities are

often in relation to something, where existence of fundamental probabilities is perhaps not
so sure, especially in many given cases where cause and effect might exist very well, but
rather we want some information than clarity of theoretical aspects of reality and it’s
essence, so rather than becoming funnily enlightenment and hoping the best or fearing the
worst, or trying to achieve security — we are not ideal, rather we want to know clearly what
we don’t know.

o Resolving the “probability tracks”, where a map of probabilities of given solutions
exists: the actual probability solves our condition that where it’s definitely in our
solution set, and satisfies the criteria 100% once the overcertainty is lost, it does not
resolve that we assume the selection of those cases.

We need to know that probabilities can be mapped, so let’s just look at the given case:

We have 50:50% of probability between events a and b:

Whenever our system decides to choose between a and b, it’s wrong in half of the cases,
which fits the probabilistic distribution.

It cannot disprove a and b, since the same happens when it tells it’s not a or b — it’s equally
wrong so the choice between these opposites does not raise the value of the solution, or it’s
probabilities.

So instead of particular feedback, it would either communicate the possibilities, or it would
get the backpropagation algorithm right if that one would rather create the gradients on it’s
probability distributions, numbers involving U, not the direct answers.

Since in Chat, the user gets one direct answer, but we are able to communicate the
conditionals: right answer is, most precisely, it’s either a or b — for 60:40% it would be
rather a than b, but “either a or b” would leave the probability open in 50:50% distribution
as the probabilities of this sentence equal; indeed it does not mean that directly, so it might
also specify something like “it’s a or b with similar probabilities”, where it would be
considerably close to the answer. This is the U mapping and we say that since probabilities
have infinite complexities — as I said each frequency of frequency map has it’s own
frequencies — really rather than including them all in our most trivial, the logical operations
and math digits themselves, we rather analyze this complex simplification we need to get
any numbers at all and not the random mess, and reaching to the end of this philosophical
process, our philosophy is simplified to two symmetric numbers in number theory. Now, you
can use complex systems of U’s and V’s, and complex odd properties of your numbers, for
example if the number length would be 100 first primes multiplied and perhaps 100 primes
coming from infinitie’s direction would join, and with Z you would even get 100 basic sub-
zero parts to have chaotic appearance of undertreshold processes, the probability is that you
reach something — the number would rather allow non-unitary probabilities. Now, given that
the number system is still symmetric, even if your number is not, based on 2 probabilities
and no complications, while now you rather work with computer than pencil and paper, the
numbers would still follow the order. Thus, it’s meaningless to have any more complex basic
system to reflect on probabilities, as we would not gain anything — only some “special
features” of advanced unreadability and systems to be ran only by genius or a computer;
genius would probably seek more simplicity, and even computer would like to find some
binary or tenary representation.

Now, given that we have resolved the complete probability system, we can also run the

philosophical method to cleanup this:

Given things we don’t know, in many cases we don’t even mention them in every particular
case — we manage to live well but not mentioning we don’t know, for most people, exactly
what time we are going to eat tomorrow, or go to sleep today; even if we do it’s not very
certain. Still, we have no problem in planning of food and sleep, rather we talk in
particulars, like having money for food until end of the month and sleeping well with given
philosophy or by noticing the signs of tiredness and trying to understand each morning, did
we sleep well, even asking others did they sleep well today.

This, because while we don’t know particular times or for people who plan times, the actual
type of food or how much exactly we eat today — we fail in any of these, the particulars, or
we fail in keeping this strictly; rather, if we really eat exactly by calendar, clock and definite
knowledge about right food for each day and each time, this would start to disturb us — there
are really things to consider, happening randomly and every time, such as being really sick
or having a special event at this day, when we should eat; in my case I have some times to
eat, but it’s not a very solid rule to follow them precisely — for example today I did not go to
eat as I have other things to do, and I did eat something at home at different time; that much
about the calendars even in places where you theoretically got this time; even if it’s at
4’0’clock, perhaps it happens that you go to toilet and it’s actually 5 minutes later.

So, where we know the actual map of inputs, outputs and probabilities: we can have 100
dimensions, but with probabilistic relation maybe 80% of information would not map
anything in particular, but provide with theoretical problems. We can find a projection,
where the words, dimensions and concepts particularly ignore certain aspects, and we do
straight implication from what is known to what is known, perhaps having only some easy-
to-describe probabilities where they help the calculations on their own — such map, with
correct language and dimensionality mapping, and some advanced math I would call
“transformation” or even “transcendion” (which means you don’t have much left of your
original system, but you found new simplicity or clarity or new best solution in terms of
such); for example in case of throwing the dices, you might state “I get the number I get”,
doing different theorems such as despite not knowing whether it will be 1, 2, 3, 4, 5 or 6,
you definitely know it equals to number by which you are supposed to move your piece,
thus you naturally know in advance the process of playing the game, even if you lack any
particulars — getting the number you actually get, following the rules by this number etc., is
where you could map your estimation of dices, measuring the whole process many times;
the cause and consequence might not give you exact number of moves, exact distance of
moves, but if you follow it to the end each time, indeed it gives you many relations within,
so that it rather looks like a stable system — men playing a game of luck, such as playing
cards or dices, where you are normally surprised if something uncommon happens, you see
them constantly getting different series you never got in your life, or having sets of cards
highly unusual, but you are not particularly surprised — you are surprised, if at all, rather
when they win big; but normally it’s not surprising that someone wins. This means your
theory is quite complete, for example you might assume the game is over in half hours,
where it depends on many random events, but you are still right — rare case where they
really stay falling back to beginning, which is rather improbable and consistently so.

* From this example: you can solve it by philosophy.

Frequential System

We consider Ten a smallest meaningful frequential system, and we can construct more complex
systems from Tens and their Strings, or we can have larger frequential systems than one Ten. If we
use Ten, perhaps the whole set of frequencies is based on True and False, even if Laegna System,
like fuzzy systems, involves a range of Truth values called octaves and their suboctave frequencies
where half octaves, already two rather countable counterparts unlike whole octave, which is more
like uncountable — where Fuzzy System uses Fuzzy Logic, the Fuzzy Logic is otherwise compatible
with Laegna System, but then it resolves tangent of a ponegative value, not the value itself — “True”
is Infinity, and “False” is minus Infinity or Zero, depending on Laegna implementation; U and V
enter the infinities — using merely a value between 0 and 1, or -1 and 1, you get similar effect as if 1
was the infinity, but as you approach the limit value it’s rather like you lose some precision and
definite knowledge of what the values would mean; utilizing infinities one would be rather very
sure, how and why the values change — interaction of the system clearly compares them in regards
to infinity and not in regards to something “Fuzzy” or rather unclear.

Now let’s see our system again, and let’s simplify and conclude the concept:
* Conditional: Condition, input and output is given.

* Integrator: Given a set of frequencers, it will map the possible solutions, unknown cases
and impossible solutions, creating not the solution — where we got both liars and truth-tellers
paradoxes in interaction of the system -, but for the purest case we define it implements the
logic, so that contradictions or harmonics would appear and we rather have a true frequential
system with harmonic and destructive vibrations of the logical parts.

* Position system or Input Set: each possible input maps to one frequency of the system, a
spatial frequency as those are considered rather equal by face value, without an integral
direction.

* Value system or Output Set: each possible output maps to one frequency of the system, of
two-dimensional frequency in this case by a view; these are rather temporal structures as the
higher, or given a goal, goal-fitting vibration is rather better.

For example, imagine a slightly refined frequencer:
* You have 20 functions, each for separate business case.

* You have input map, where each function has 4 inputs and 4 outputs, and now you are free
to map outputs of each to inputs of each, for sake of simplicity.

* You have 100 tensors, which are able for boolean values: positions of tensors determine the
conditions by which each function would resolve it’s solutions, and they use the tensor
values internally, these are not inputs nor outputs — the programming system, automatically,
would optimize them on your behalf, or you write instructions to optimize the constructors;
by these instructions you don’t implement a goal — which is given by frequential system -,
but you help the system to resolve the given goal; thus, each line you write is meaningful —
frequencer system is the framework to optimize, and programming the tensors you and the

programming system, and Al, are quite certain about what you want to achieve, so you
might get errors or warnings based on that you are not optimizing the system; which is better
than programming the goal into the tensors — it’s like strongly typed language, where the
tensor, having goals on it’s own and not a criteria, would rather be a weakly typed, and
worse an environment not very sure what you want and what could be an error.

© You have systems able to find balanced combination sets etc., where you can work on
combining the tensors.

© As tensor is not containing an absolute task, but an optimization: purely logical tensor
might get perfectly optimized by logical language and not the Al, while non-trivial
optimizations are done by Al

The result: the solution sets, which yield the best results, have implications, inductor is
preferring them; where the solution sets, which do not fit, have explications, deductor is not
preferring them. Part of logical program might not give a solution, where you might include
the goal to have numeric solution (follows); by having a frequencer, your program is having
more logic as a logical system, not definitely a final solution. Certain clauses would now
give contradictions or definite answers.

Tensors

Tensors are famous now, and my tensor logic:

Constraints: Tensors might have constraints, for example tensor set to layout a document
knows things like aligned positions of words, leaving the box for image empty of text etc.

Tensions: Aligned with frequencers, they get tensions; for example stylish layout is not so
strict constraint, but made of many tensions.

Inputs: A tensor operates within some given context, with some accepted values; it is aware
of the flow of the context, for example moving the image would reposition / “relayout” the
text.

Outputs: given it’s degree of freedom and limitations, tensor would reposition the words.

Acceleration and inertia: tensors, as the preferred values fluctuate slightly, a good position
of noticeable button would even depend on where you look — the button, which simply
moves under your mouse disabling any other function, to be “easily clickable” won’t do;
rather there is an inertial system that while best position is important, the button, once
appearing to a position, has certain tendency to keep the position, along with it’s general
properties. In a file, you must define a “random number” between two numbers in other
place in the file, but depending on the case the number would never change unless it does
not fit to it’s range or domain, or it would be recalculated if the domain would allow for
much better optimization and it’s not only random.

Tensors could adapt to many frequencers, where they need a lot of balancing etc., where the
common idea would remain intact.

Probability Frequencies

Let’s see what the probabilistic system would do.

Let’s implement a probability Truth Values; for a reason we call values frequencies:

I: It’s not definite that the frequency is true, in which case it has “value in infinity”, where
we map any unknowns under the “infinity” umbrella term.

O: Given frequency is definitely false.

U: Given frequency is definitely unknown, this means producing unknown output, we get
50:50% (U) distribution of True and False.

A: Given frequency is definitely true.
E: It’s not definite that the frequency is false.

V: Given frequency is definitely resolved, this means given the position of V, it’s relations to
the whole ponegative system, the result is correct if the letter exists, is of letter length (R=1
meaning that it is a digit), but the correct result will map the rest of numbers it belongs as
fractal and computes the average — if the random behavior is canceled otherwhere, V reacts
in a way similar to infinity: where the number is straight in infinity, it fractally repeats it’s
value to each direction and dimension of infinity, but *does not* count those as digits, but as
context — the number simply exists as if it was value slice of such infinity; the number,
indeed, associating to V, repeats it’s value into V the same way, but also including the digit
as part of it’s value.

Number of Laegna, here, also involves a fractal structure of it’s value, which is often omitted but
exists for complete theory and advanced implementation of logex systems:

For real, each Laegna number would depend on it’s history and plan of computations, and
create knots every time; it would be noticeable, which numbers were modified; for example,
by getting new hope or resolving fears, you might get the same numeric advantage if you do
that in precise amounts for both; in one case, your number is better by solution to low
frequency, in other case the solution exists at high. You might not be interested in this,
getting many results to turn this into simpler number, but you have a lot to do with this — for
example, Zin, Zen and Yen meditations resolve different frequencies, and Jung said positive
and negative frequencies need to be harmonic system, not that you prefer to solve the
positive and not become conscious of the negative, in which case you won’t survive —
something negative happens anyway.

Each frequency grows, as a fractal, into deeper frequency levels (downwards fractal, U): for
given four frequencies of a frequencer having values for IE range of 4, for each value it also
has 4 frequencies (for example with 6: it might be false that this is E, but not immediately
true that it’s I, nor even that it’s one of IOA — by deductive, not being E would give you
IOA, but you might not want so strong deductives as you are not sure that you are running
an ideal case of a closed system; in practical math you need some probing — for example,
maybe the “not I” just gave an exception every time or the system did not fill the table at all,
or maybe it’s mapping to E as a very special case where you are interested whether it’s I, O
or A actually, not only by deduction); where deduction seems extremely strong, it’s not
really better than induction. Now, you can have value U at two frequencies O and A —

having both as U, A might not be A or it might be A, and O might not be O or it might be O:
this combination of two maps to having U as a value of the frequencer; trivial frequencer
might become just one letter easily in this way. You might have that while A gives you U
“not certantly”, O gives you “not U” — while this seems illogical, the progress to the solution
is Zin, not Zen, which means it does not have to be straight logical; I gave this one a lots of
consideration, and depending on how you check the values — you can be more sure by either
implementing synchronous values, such as [U, O, O, O] would give a deductive that the first
position contains U; this is sure if the table is closed and you have bounded logical system —
this is extremely annoying that most of trivial AI’s are bounded this way; in reality, either if
you have an unrealistic goal or value set is unknown, doing straight deduction would fail in
Posetive of either the goal or it’s setting, for example if you don’t get a million from either
washing the dishes, going to walk or meeting a girl, you cannot deduct that you must get a
million for being hit by a car, which is rather improbable even if you could easily implement
it to a poor deductive system, where similar case might seem very realistic. Actually, getting
[U, A, A, A] would then give that if all three possibilities work, the fourth possibility won’t
work — this is a complex case of how you can map such logic by symmetries, but obviously
you cannot assume such things; rather, you can find it from everyday logic of our era, where
the mistake not, but the implications of it are fairly common fallacies, for example if one
won’t survive by truth, they would definitely survive by wrong — which typically fails, and
does so miserably, where deduction cannot be used, but even worse it looks like an
induction of what you get from the wrong and you might fail to notice a deduction of this
case; this is not mere psychology, but a decision problem: while decision does not exist, it’s
hard to convince a human being in it, rather however wrong the situation, you run into
decision paradox that you have to do something; rather you run into paradox that you have
to meditate or work to become self-dependent, but it’s rather non-trivial to see a possibility
in that, and the solution is rather to see a meaning than definite success.

As given in the end of last paragraph: V is growing outwards, where your whole system
would be wrong. By V digits it basically “grows the fractal upwards” — the V digit, even in
necessity to execute the function at all if you can somehow do this utilizing in-block
conditionals that despite calling your function, it might not be executed as if it was in the if
block; V means that you utilize the solution as it’s given elsewhere.

Frequential operations:

Consider Truth Teller’s paradox:

I am telling you that this sentence is true.

Given that you say the sentence is true, it does not break the logic to assume it’s true. But it breaks
the logic to assume that the very same sentence proves it’s True — it’s also called a self-fulfilling
prophecy, in a version where the main point is slightly harder to meet.

It would be easy to detect, but only if it did not have exceptions:

Usually, it’s easy to resolve it, be it good or bad — rather, things you get by this paradox, you
might do them all, more or less depending on your logic and interpretation. Rather, where
the problem resides — you might lack any reason. It’s hard to see the fallacy of doing
unreasonable things, but in this paradox the Posetives are perfectly exposed in this sense; the

value is simply a posetive, and the paradox — here, in Truth and not in Lies, so strongly that
it would prove the Posetive itself, if not nothing else.

The paradox, indeed, does not appear if you do have a reason to act in self-fulfilling way;
the case is that the thing might fulfill you — in reality, it’s rather that you have other good
reasons, more often than not if the selection is simply good.

o

Imagine the classical paradox: to get job, you need experience. To get experience, you
need job.

Fallacy could be: then, getting a job itself would be truth-teller’s paradox, because you
really get it because you get it, the actual resolution such as practicum of school, doing
some work for free, participating in conquest, selling your product or proving some good
things about you — in each, it would look like a classical posetive if you meaninglessly
stare at the tautologies of posetives.

In case of winning a competition, you would go there; you might not bother if you don’t
get a top 10% position, top 1% or straightforward gold. Here, if you are unable to train,
you won’t go — but then, training is meaningless if you don’t win. Winning is
impossible, if you don’t train. Structurally this is like Posetive: each decision is
determined by other decision, and if you go to win, because you trained, but you trained,
because you are going to win; indeed you wont go without being trained, and you wont
train without going to win — you can see that the solution, given the Zen of letting go is
done if you don’t win, is not in this description. This is the second fallacy of truth-
teller’s paradox: despite, technically being able to recognize each symptom of the
paradox here, the reason why you want to win is rather not contained; rather the gold is
good in itself, not because you won even if binary understanding of Zen would give
exactly that paradox — every time you let go by Zen, perhaps because you did not want
this in first place; logical person is apt to tell you that: if you are not friends any more, or
relationship would break, precisely because they did not want that in the first place.
Rather, which is more true, they don’t want it now, where I said “Yen” (which means
money) — indeed, it’s not logical, but despite you did not want to succeed by binary
logic, once you lost, you rather *do* want to succeed, you just have better things to do;
in Logecs, despite you gave up, not giving up would still have been better; only Laegna
Logecs gives you the ability to regret, or to be happy for the surprise; using classical
Logic, regrettion and surptise are manual activities, not logical conclusions: consider, as
Turing said, you cannot solve the kind of paradox of decision depending on it’s outcome,
but you have to invent manual solutions for each case — this is the paradox itself, that if
logic has any fundamental properties, resolving something like Truth, why it would then
fail, in special cases, unless it’s not logic? It fails, because logic is not designed not to
fail — it knows nothing of failure and success, self-reflectively you cannot describe such
thing; it’s not false, your failure, it’s absolutely true — bound to logical box of black and
white vision, then, if you want any logic at all you ultimately agree with your failure,
and here comes the point where you rather want to live than think rationally, along with
other things. Laegna Logecs is carefully designed to comply with life.

Here, the posetives are hard to distinct from the actual cases — while liers paradox gives
you straight mistake, the truth-tellers paradox won’t, for example you might fear people

that God would bring the bankruptcy if they waste money (well my trivial understanding
of God, simply the Truth — you waste money and there will be the bankruptcy); you tell
them that by fearing that,they would avoid it, and by having sensible people around, you
are telling truth that you avoid it. This is the form of classical paradox, where one fears
you with karmic consequence, which occurs only because people see your fear. Here,
also, the paradox would appear only out of the fear, and the “prophecy” gets fulfilled —
so when you are telling your way out, and that it will be done as it’s True; otherwise,
people would avoid the trouble of being not listened — with active participator like you
they get convinced that they themselves want this / that. So they do it because they do it:
solution is, they do it because it’s good, not because now they would only fear to be
rejected otherwise, they rather want money.

o In solution: the paradox, unlike liars paradox where you have nothing to choose but
plain impossibility, is resolved as false posetive in case of having a reason; truth-tellers
paradox might exist, but while there might be more reasons, it might not hold in a given
case because it does not prove it must be impossible, rather it might be useless; unlike
the *logical* conflict, which almost always invokes a negotive — you really cannot do
this and thus you don’t care whether it’s exactly this argument — in case of truth teller’s
paradox, nothing immediate would happen just by the paradox itself, and you are rather
interested that you have exactly that argument, with example:

= You could invite people to your birthday party, from you 50 friends selecting 10 who
are coming almost anyway, and not inviting 40, who have rather other things to do
and won’t come anyway.

= It looks like truth-tellers paradox if taken at face value: you really would not bother
inviting people who come anyway.

= [t’s not exactly that argument, but rather the whole story of your friendships, with
each having a special story with you, which rather determines whether they are
coming or not — that “anyway”, here, is the logical system, exactly the other
argument to express it somehow.

To resolve truth-teller paradox: while, trivially, in inductive and deductive logic there are less of
them — probability logic is full of it. You don’t have much to do, looking at probabilities, with the
fact of whether or not what you said is true — trivially, giving user numbers from 1 to 6, randomly,
would get 1/6 of them fit for dices — by probability theory, just repetitively giving them number “1”
would just yield the same results. Finally, in some settings for example you might just believe in the
case you tried, which is not optimized very much to other, specific direction; you might get just
random result based on some specific statistical invariance, perhaps today you get less of 6 and
more of 1, but tomorrow the user is trying this and getting exactly the ones, not sixes.

There are people, who believe in determinism and destiny, and people who do not; there are people
who believe, that Universe is perfectly unfolding — indeed, this does not need any determinism as
the probability function might be perfect in itself, with no more perfection available; where at some
point the imperfection might be really painful, destroying our fear: in normal degrees of it, we can
rather assume that if we let go of what we cant, and the Universe does the same, the best possible
solutions rather define the perfection; we can assume that it’s not absolutely imperfect, where some
qualifying criteria might just straightforwardly destroy the Universe and everything contained, as

it’s really not possible. Rather, by our experience, it is possible and thus behaves like normal system
— it’s rather depending on our acceptance of it given what it is.

By accepting the probability theory, you might assume that it’s not a perfect machine, it’s not
deterministic, the faith does not exist or there is no destiny: given that, you would get a probabilistic
experience; the probability theory, such as game theory involves as well, does not exactly state that
only probability exists, but we can continue with philosophy — not knowing — and rather define the
probability as something, which would appear by given four cases, but it would also appear
without; we can see that we don’t know, also and including that the nature does not know, in sense
that it’s rather solving higher and higher energy states and thus having more and more resolutions to
things, where initially only the random states were appearing and they equally random resolutions,
as much as we can know by the analysis — so, the probabilities, in your computer system mean even
more than not going: you are not able to describe to your system and to give it all the input, all the
algorithms, and all the proper commands. Indeed, the math runs, then, into probabilities often even
in things you solve in time, simply analyzing your intuitions and the ways to express, formulate,
prove them or find the practical aspects and solutions and to confirm them by experience and
feedback cycles, such as trial and error.

While we considered the problems and possibilities, now consider the easy probability system in
very safe environment:

* The system has to resolve a frequencer, which can see the probabilities.

* Input and output: instead of exactly checking the literal output of your system, the
probability output will be checked.

* Insimplest case, it won’t separate the probabilities, but the frequential function calculates
the long-term frequencies; the series of input and output flows must fit, where more local fit
(T) is more intelligent and gets more score, but the long-term fit gets a basic score, and
failure in long term is worse than not awarding some short term success; indeed you need to
balance the optimizer given your goal, and whether or not the short-term success has fast
accumulation factor into long-term opportunities outside your measurement; sometimes
earning 100€ now would be better, given you invest, than secure 10€ each month after a
year has passed; where you might also include your investment plan. It might be your
problem where you are unable to wait, where you program your system for rather sensory
desires or easy life, and it’s hard to convince you then; also maybe you just need to survive
until the next year and resolve this short-sightedness in the process; often such choices are
still problematic — the reality might not contain the solution as given before, and is rather a
complex dynamics than single solution you have to achieve.

* Consider: you have complete logical system, where and, or, etc are mapped to actual
probabilities, or variable probabilities, and in response to any request you create a
frequencer:

o Frequencer contains the known probability.

Now, the feedback is generating the following: given the long-term flow, and the case that number
of unrelated probabilities still map to probabilities, even not influencing each others; now you use
long-term feedback and you get proper U values over time. This is harder to program than the past
examples, as you might benefit a lot from the L. => R mapping of system onto it’s parts, not easy.

Frequential System of Ten

Now, we reach back to Tens, having removed frequencers and tensors from the need of this exact

format:

Logex aggregator: this is ponegative value of the tension between local/past, or total/future
solutions; for example True in the past not modified by the future might map to Position A,
given you are interested in changes (Posetion would have downwards accent if asked), or
Posetion (with upwards accent if asked) if you are interested whether the value arrived from
the future; it can also be one or two digits, where first digit is base-2, containing the given
solution, and the second digit is arriving later, containing what happened with “infinity”. For
this reason only we won’t add any letters to Laegna — those solutions are topologically the
same given that we really see 4-dimensional fundamental system, and while we can count
more dimensions here, such that first two solutions indeed include at least one additional
dimension — rather, we won’t understand more but less, if we think this has to do with
fundamentals of logic or worse, of logecs.

o For example, with binary system, a function might return either true or false, but it might
return other properties such as fundamentally so or locally so — in the meaning of “yes”
and “no”, this is not fundamental — rather we always use a number of bits, often where
we rather want to communicate a single bit. Very often such additional bits are lost in
communication: for example programmer is told to implement simple conception of
logic; they have always some “technical aspects” and it looks not mathematically
elegant, but rather practically solves the problem, often having different mathematical
form from the definition — this is something conceptual that talking about that, we still
talk about our original mathematical formation, rather the standard form of it, where we
are having “elegant solution”, of programming, but this does not relate to the simpler
and more conceivable problem we talk about when referring to the program — the
algorithm is rather a tool, and there is underlying reality, rather something intuitive and
not formulizable; alternatively we have square pixels on screen, but we are talking about
circles not about the exact mapping, which is about practical purpose — the circle, still, is
the ideal mathematical concept when we are referring to it, and we apply known axioms
rather than pure pixel logic.

o Logex aggregator can be string, containing multi-digit values of ponegations, but when
you go deeper, this must also have an aggregator; diving in, you must find the one-digit
ponegative value. Mostly, everything would have an aggregator: for the Al to work. You
have to see how much you want this in your language and can you define the absolute
necessity, but rather the objects and blocks have kind of “mood”, something to optimize
for.

Goal: whether you want to get True or False. Also, perhaps you only want an aggregator: if
you want false, you assign the aggregator with “not”, for example if your variable is “sad”,
but target is “happy”, maybe your aggregator is “not sad” where it would fit with “sad”
being “false” without setting a negative goal.

Tensors: either a list, which affects the goal and gets tensions from here; or a math
operation: for example a, b and c being tensors, “a and (b or ¢)” virtualizes them into single
tensor with face value — you can show the optimization state — while it must involve

dependency of all three, thereby optimizing them. It’s seen as if Tensors follow a Tension to
resolve a Ten. Faster and simpler version would be able to set the tensors based on the value,
for example you have states of Tensors for True and False as a result of Ten. Tensors, if they
are complex or “mystical”, are resolved by an Al, whereas if they form a trivial logic circuit,
they are resolved by the logic machine, where AI might become still interested in
uncommon exceptions.

T-frequencer: [O, A]; positions True and False, of this Den-frequencer (2 values not 4)
mean outputs for values True and False, which will be tried.

o Frequencers are attributed by condition, input and output of condition, and relate to how
Tensors affect the conditional.

R-frequencer: [I, E]; positions True and False, where this is also Den but made of, are the
inputs, rather outputs of T-frequencer or where the same combinations are tried.

o Frequencers are attributed by condition, input and output of condition, and relate to how
Tensors affect the conditional.

Ponegative value is what happens when comparing the two. The latter is thought as being
smarter — it reflects the long term consequence, thus approaching the infinity by it’s one
digit separating the I and O (T and R, past and future, where human will do A and O).

Sequential execution:

Imagine it simplified:

From future blocks, you can only change the Ten into either “I” or “E”, having access to R-
frequencer in other words.

From past blocks, you can only change the Ten into “O” and “A”, having access to T-
frequencer for that purpose.

Tensors get the feedback: they fail or succeed. You can invent ways to have more complete
bias, but logically we need to describe ours to the computer; if it got these relations,
theoretically it has all the information; this means after having this defined, what follows is
rather proving your values than setting the initial task — simpler, more relaxed part of
programming, where you can get useful feedback as much as your machine is able to
support you by all it’s means; if you don’t have the definition, you rather work alone. So,
with given Ten, Tensors are defined but not combined — combinations can be complex.

o Here, I don’t include optimizers or combinators: rather, they logically follow and we
assume an intelligent reader until we got something ready (notice it’s already page 82
and with all the details, it would form a part of introduction — I think there are people
more capable for this than me, where I want to find the way in, not to perfection or
brilliance right now, which would be achieved by unified human effort).

While only the future blocks can manipulate IE, and only the past blocks can manipulate
OA: where the execution is sequential, the information flows in two directions effectively,
and while I wont describe the details (you can even have simpler version depending on the
paradigm you choose): for an IE block, the last OA block is in the past, but the next OA
block interacts with IE block after it. While this can be solved in numerous ways, I have

given you the concept; your programmers: you know, they might need something simpler or
more complex.

Indeed you see that while the frequencers allow you to build actual Laegna Logecs Tens for
example based on two Tens, my solution assumes you are building your system on Logic system,
not on Logecs — while, alternatively, Tens could contain bits because in total, there are still four
values contained in to Frequencers both of two values. Indeed, recursively building a Laegna
System on Logecs machine, utilizing powerful optimizator and more tautological operations, you
might prefer that bits do not exist, only Tens themselves; Dens exist to analyze and simplfy Tens,
but they are not bits — in reality, you might want ponegative properties for Dens, where underlying
system would detect the failures into infinity; you might remove all bits alltogether and have the
Frequencers, from inside out, to be ponegates — for example frequency 2 or R frequencer might run
into Posetion or Negotion itself and it would be better to watch, and perhaps easier to implement. In
our case, we build a simple ponegator on Logical System, and we get the perfect output for an Al —
otherwise, we would run out of time, out of pages, and in some cases perhaps out of written
tautologies, reaching something mystical and cryptical in early stage of development or design — not
a good thing as we would do such integrative, recursive solution when we have got all the tools and
means; currently we want an Al to discuss with us, and to function as Code Assistant — boost so
great that we really do not bother. We need to generate some code, numbers, ponegative examples
where the bits actually work, before we become purists and talk about complete Laegna.

* Additionally, it’s interesting how you map a classical Logic system into umbrella of Laegna,
which would react to posetives, fuzzyness in infinity, and any logical bias Logecs is
designed to avoid — for example, such binary system should not be apart from life, and it
could meet some ponegatives in it’s flags; for example, while there are no direct logical
definitions of a lie, of a fake, of difference of not wanting or failing to get; each of such
examples is made of many special cases: still, it’s easy to map to things like “is this sentence
true?”, “is this better that it’s true/false?”, where with these two bits, we can do binary logic.

* Notice that if you think computer is binary, you might be not very precise: conputer is
algorithmic machine rather able to emulate all kinds of discrete systems, such as Game of
Life, and not restricting you to have them make any sense of binary logic; you can create
completely illogical systems given how they represent their values, rather by creating the
response to stimulus, abstract structures of memory and processing, and nothing is limiting
you to having binary relations between your variables, such as one being false when the
other is true — rather you can implement a logical system, but tell it to accept a paradox and
it would do this as long as the paradox does not enter it’s circuit of decisive logical values,
such as the bits by which it determinates the program given a logical fallacy where it expects
logic. This is almost as true as the fact that you can photograph a surrealistic image
containing something not possible by physical laws, and map it as a texture into an object in
your physical simulation — it would not detect anything, nor does it want :)

Knots and frequencies

Numbers are numbers, but they contain a lot:

There is difference, whether a bad thing is made a little better, or a good thing is made even
better.

Between impossible and sure, between deduction and induction, there is a long list of
questionable, even random values.

In Laegna, when you do operations — multiplication, division, addition, subtraction (list 4
but count them all, like in Laegna if you say “yes or no” there is no definition that it would
not point to each four; the two are not resolvable without the four) — it might be memorized,
the whole process, and complex variable would contain each transformation. It’s easy to
notice that the numeric value would be the result, while in the memory, you might have a
variable, which is existing in complex structure and would notice the differences, for
example avoiding a trap is not comparable to true freedom.

Sometimes, digits in a number are considered as if the number is whole unit, there is no
space between them. In yet lower octave whole words must be separated by infinities. In
many cases, where the operation would leave no difference, and things are continuous with
no breaks, the system would consider “zeroes” as existing objects, infinities in lower
dimensions, and map all these dimensions; for example for 4*4 and 2*8, the answer is the
same, but multiplication itself is a “zero” and the system, when asked, would trace back and
notice the difference. You can do more analysis.

Knots perfectly contain the multidimensional frequential system.

How knots work?

Imagine numbers below and above zero — when they are compassionate, pointing each to North
with their Position, to do so the negative numbers are mapped in complex way: both R and T are
polarized, the coordinate and coordinate system are both flipped. Looking at this, you see at least
two parameters playing to form an actual number.

The properties of some numbers, also the normal math, then allow you to design knots based on
following such properties further, even involving Posetives and Negotives to form a complex space.
You need to carefully design your approach to the number system and especially your given
examples, but what you reach:

Such number is rather self-reflexive, able to understand when, from it’s own value, it
implied a different value; the complexity of polarity, especially utilizing V to pass the cycles
not just linears (li-near, where li is a step on the road, li-near would mean particularly
nothing to use some Laegna wisdom), so you are able to map AT and AR, Turing and Luring
(Raring) paradoxes; in Laegna the solution set you might call Tareng and Rareng (“areng”,
in Estonian, is development or acceleration in our terms; “reng” is positive “ring”; “Tu” is
unknown after theorem and “Lu” is that in flat, Zen unfocused system calibrating to infinity
— the number is so flat that your local situation appears in regards to infinity, into the same
number space, an effect I call “Mind”).

© Turing or Luring paradox: it should be simply one number, a normal logical value, given
you get this known.

Such number should be able to map the multidimensional frequencer with one number, with
all it’s properties, turning variables into components.

It should be able to consider the history of a variable.

Why it matters? While you might not want to randomly map them, given the effort: the
resulting piece is a mathematical number, having the basic operations defined, and it has a
number form to express it normally with a few digits; basically you are not working with
them separately from your other flow of the math; rather you can add such features to your
system where needed, where redesign is rather beautifying your code for visual compability
than any serious refactoring, which would disable such complexity from our common
circles.

To analyze knots in real numbers:

I gave you that: IOAE form positive and negative numbers. Negative numbers are made of I
and O digits, and cannot contain A and E digits. Positive numbers are made of A and E, and
cannot contain I and O. I gave you: if you still want all four digits, you can use simplified
system, for example E at second position of the number (from right to left, as this direction
matters for numbers) means area of 3, 4 for the first digit; A positions the first digit to 1, 2 —
then, O must position it to -2, -1 and I must position it to -4, -3. Now, have OA — despite A
ispositive, where O, in opposition, is negative, in this case the value is -2 — where O gives
the last letter two positions, it will select the lower one, where A is smaller than E and OE
would be -1 (notice we don’t inverse any values, where based on decimals, it’s the first
thought that why OA is not -1 if you swap A and E below the line — rather, the values would
not make any sense at all if they just randomly exchange their places all over the number,
and you would switch back to simpler decimal system).

While this system is simplified, it does not account for curved number spaces, such as
positive and negative numbers, where negative numbers are inversed first by their
coordinate, but then the coordinate system is also reversed and the number reaches back to
it’s position. Notice the “projective” and “real” axe of numbers, and rather the case that they
exist in various forms — to have non-projective negative numbers, the projective system,
once the number moves, will balance the case of negation, doing it itself; then, “upwards” is
still good, and “bigger negative number” is not actually smaller.

© We are disturbed if smaller number like -5 is said to be bigger than larger number, such
as -3; for example, -500€ would be much more than 100€!

© We are also disturbed, if square with each side being 0.5 cm would turn out to have area
of 0.25 cm — while in geometry, we have square centimeters, we need to notice that for
numbers, we need square numbers or we get mathematical version of the problem that
by multiplying infinite number of dots contained in 0.5 cm with equally infinite number
of dots, we now got two times less dots than in the original number! This is a
mathematical fallacy — rather, we need this behaviour to be very well described or we
have nothing to do with infinities, which are as eager to attack such fallacies as the
geometry would be, finally containing something like 0.1 millimeters of milk in the
bottle, if we just do a bunch of random calculations, not necessarily contradicting
anything mathematical, but only physics — in mathematics, we cannot say so trivially,

why my screen is not for example about two time smaller than it’s diagonal, an infinitely
thin line when we think idealistically.

* Now, with knots: in case of , our example: consider if we are switching the space itself in
various ways at different number positions, is a complex space of some kind of curvature;
yet we know all mathematical properties. By this, for example, choosing the right
parameters for numbers so that the expression is elegant and the values reachable
(personally I need to extend the number reach a little, while in the given number type you
easily see each quality of such system you might use accented digits to have real values
more easily, as those can reach outside the limits of your notation; also consider that while
A(AA)A means the “(AA)” is stretched to one digit, and the value is AAA for this number,
A[AAa]A would mean that the middle digit is not only of this value [T] but also of this size
[R] —size is 3, last whole number position maps to second position of three-digit number,
but as it’s as large as written, one A is added to both sides of this digit, breaking away from
number limitations). You can also use the case that “AAA AAA AAA” with spaces between
3 groups are seen typically as XYZ number where each frequential zone is separated by
space — it’s equal to [AAa][AAa][AAa] meaning that each digit is extended to frequencies at
each of X, Y and Z line, and the number is unbound. If you utilize all this, knots become
complex.

o Imagine also the participiation of V: in programming, you are interested that at it’s given
position, V can do a circle from largest to smallest number: AVA means, V at second
position is not connecting the circle of biggest value of the number so that it would reach
back to it’s beginning; it would do this at digit postion so that in this case, where I at
second position is -2, V at second position means you pass 2 and reach this I again after
a circle: this is equivalent to small step towards circular infinity, leading you either back
to beginning (non-wheel) or to next circle (wheel), but the circular effect could be
unavoidable in both cases — easily, circular logic can still create progressive effect
through self-referential influence, so the non-wheel properties, rather than defined are
parially measured, they can happen in your number without your intent, where the
number being solely circular might not be correct.

o For example, if your given infinity would accelerate your number, the local infinity
would do this too — you have a little acceleration factor where V would pass from 2
“back” to -2.

Accelerating Systems

Laegna geometry prefers and utilizes the space, which is inherently accelerative — if you don’t
consider this, even if you prove the existence of such projection, any operations would run into
impossibility. The proof is given in Laegna Base Alphabet: but here is something impossible.

To resolve this: doing calculations, you also have direction: you move frontwards or backwards;
number value won’t change a lot, but the knot structure treats them very differently; you can ignore
this property until you reach knots and higher spaces such as accelerative geometry with it’s
accelerative space.

In this geometry, you constantly slow down — you divide R, zoom towards X from ZXY; then you
can draw normal forms. At normal calculation angle, you can see that you want to go there and
come back, but rather odd things appear like having heavy speed when coming back where A=A+4

followed by A=A-4 would confuse you as you don’t really know where you are now. Naturally, in
A=A+4, you would speed up: the R is expanding at heavy speed, and you have seeminlgly solved
many Zin and Yen operations where you really wrote one “Zen” operation — it did not happen here
and now, but it resolved some past karma and it did set high target for the future, getting into fast
pace of ..well in the end of 4 cm the “modern” could be far behind, depending on your coordinate
system.

Now, rather, the number is accelerating when you pass forward — the real space, and the projective
space, they are both moving. To get back into the beginning, you really have to move the operation
time backwards as it could get forward rather on it’s own in this system; to keep normal geometry,
assuming that it’s hard to do any operation without time passing — you have to scroll the time back
with equal speed! This is rather not just a weird invention of Laegna geometry or math; rather, it’s a
defined space where it’s almost impossible to add and subtract, because the heavy acceleration turns
it into nonsense, for example adding 2+2 gives you much bigger distance than 4, even if it consists
of two components of 2, and to imagine that you reached 4 by adding two 2’s, rather this is an
emulative strategy where you have to slow down the projective space so that resultatively, you can
emulate effects such as your 2 plus your 2 would be rather 4 or it would be rather your 4.

* Idon’t want to avoid this: we have to live to the future and this means accelerative
coordinate system, where this is called “D” factor where in accelerative space, the whole
would be measureably bigger than the sum of it’s parts — talking about our little activities in
grand accelerative space of society, little “d” factors happen within every step of us:
accumulating to society, the society is accelerating, and when people might not do much
more than us to achieve this effect, coming back each of them then has a little accelerative
factor relative to their contribution.

* The ball, basis of Laegna system, does not fail reaching the infinity: one can think, while
with the straight line it’s hard to understand where it reaches, with a ball it’s rather clear that
the line would continue indefinitely, or the ball itself would fail any logic; for the line, it
would fail it much later. This is rather trivial case, but you can see what I mean — the actual
reason is that acceleration simply is there, by mathematical synchronicity fitting each kind
of theorems which could utilize different paradigms and axiomatic systems able to check
whether it’s there; indeed, each of them given it’s correct, would give a different reason, but
fit the correct answer: this way, mathematical synchronicity is a deep truth, even if it takes
some more steps of logic to see it’s rather impressive.

Free Number Space
When a computer is going to reason this, it can get further:

» Utilizing the Second Spatial Theorem of Infinity: for the whole number space, analyzing the
examples of projective spaces, one can see that whatever value you give to digits, they are
not necessarily contradictionary: for example in sequence 0.(9), would you have actual “10”
instead of 9, still running it in 9-based system where 9 is the upper limit of normal system
(preferrably you use uncompressed decimals if you want a perfect case, but it holds in
normal system as well); when you “zoom out” to slightly accelerated space — what seemed
to be a limit, just enflattening numbers to be equal, not depending whether they are big or
small; just adding one infinitesimal to 0.(9) you would get 1, because one infinitesimal got
removed by rounding the number itself to 1; instead, you already get infinity — with one

infinitesimal, depending on your calculation (since it’s not very coherent case, you can find
another calculation or optimization to cancel this effect — given it’s strict math, this is even
worse removing all the coherence, even if it would make sense that 1 — infinitesimal +
infinitesimal would equal to infinity — this is the optimization case where you don’t get this
straightforward solution), you could reach what is called the actual infinity. This is simply
not possible! With perfectly allowed operations, one should not be able to get the numbers
yielding so much, rather it’s the mathematical imperfection of binary system, decimal
system included. Rather than this, you learn the theorem and easily map such number
spaces.

With the RT transformations, which happen subzero (below threshold) and below zero
(minus); you can analyze the actual number space curvature: for example, with this, you can
rotate the digits; you carry the same effect above zero — and it’s quite a neutral
transformation — and you get your numbers facing backwards; finally you get them facing in
all directions. When you get them facing perfectly upwards or downwards, equal to using
octave numbers with little triangle after the number in place of degree symbol, which looks
like masonic triangle (well it is: it represents the frequential shifts), you would understand L:
L is the constant of Mind, Society, Ethics, the Left Wing or whatever the mathematical
abstraction would represent, which is limited rather by numbers than conceptions — in the
appearing space, your left-wing activities and ethical considerations would map to very
similar topology with your R, the normal activities such as business: in here, ethics with all
the laws of karma, it rather resolves into normal business; given your R space contains
numerous operations and maps your business for example, when you reach the L space you
would see, from the mapping, how your left-wing activities, such as socialism, communism,
spirituality, left-wing understandings and abilities/activities: all they appear with same
topology and spatial structure as the Right-wing business in R space, and if you finish the
calculations about positions, nature and values of such numbers: you can be sure that this,
like Mind, exists in the same space with the number body; each number got, it’s left-wing
aspect, in a way that their social activities are forming the same shapes with equivalent
personal activities. The numbers differ in base frequency — rather, they are I and E at the
same positions with O and A, where Laegna needs this dimension for that purpose, for
example to write RT numbers with R at even and T at odd digits — you see I seem to write
“even” and “odd” backwards, but rather I also, in math, write left and right backwards,
where Right-wing rather comes first; generally, R and T are switched — in actuality, R comes
after T; thus, also the even and odd positions are switched and we cannot be so sure about
the words; rather, we use them in opposite directions for mathematical and physical systems
in many instances; writing “personal” first and “collective” second, it’s natural in math;
whereas in life, we tend to have “personal” at right hand, and “collective” at left hand,
which is equally natural — most people write with right hand, and with left hand people tend
to naturally think, well, more left in sense of utilizing more creativity and perhaps
intelligence, and tending to integrate the left and right themselves more perhaps; in brain
structure we can see: while, to outside, it maps left and right in one direction, in inside world
such as math, the brain has them backwards, which would explain my natural instinct about
Laegna.

Knots: in advanced case, you do them downwards comparing to subzero, and upwards
comparing to above infinity curvature: integrating all this you add complexity, but the
solution is more complete.

Where you can turn the numbers, you can also have bigger and smaller numbers. Those
have coordinate transformations — they map to slightly different space or curvature.

Given all this, now you can also smoothly move them (pan), not only by one digit, but by
given distance.

Given this, and all the resulting relations such as analyzing, what happens in the real space
at the same time, and how to back-map in reverse order, etc.; the computer would have
extreme ability with numbers.

Simpler Laegna Number Transformations

While numbers exist as digits in discrete space, we would also need continuous numbers:

Laegna numbers easily pass something like fourier transformations. Given the number, the
hidden preciseness could be huge, but the visible number is still a few digits — what happens,
for example, with large tensors and their even exponentially larger weight matrices.

The number can be mapped in a way that pixels on screen are actual digits, with positions
from left to right and frequencies from top to bottom. With preciseness, it’s rather trivial
operation and it involves that each initial digit, visible as small number, is a square in this
space; or you can stretch it to be of number shape, in which case each number digit maps to
visible area in your frequential map, which is essentially the same you would see on screen
of a decent music machine, where it’s either simplified or not.

Here you can zoom in, zoom out, and pan.

Normally, two dimensions are what you need, but there are no reasons why you should not
have more dimensions.

We are going to use this to learn AI weight matrices and other information.

Consider the following as well:

Within Laegna, a meaningful matrix has single number representation: what an Al did learn,
you map to the screen. This is rather the actual value than anything invented: matrix has just
this meaning, and this meaning maps to just this number — mapping all the matrices and
doing the operations, you lose rather the precision, but not the essential idea.

Within Laegna, you can prove that n-D multidimensional system is basically always
mappable to 3D, except that with given amount of information, you cannot achieve a perfect
shape with actual symmetries — rather, the result is distorted. The reason and appearance is
the same as mapping sphere to a square — while getting all the pixels right, you get it
distorted for lacking some dimension, not for lacking a basic geometrical space where such
thing would happen. The same way, mathematical space exists, which maps any n-D to 3D
space, where it’s not so flawless into 2D, 1D or 0D (0D does not contain coordinate space,
but a single dot could connect to itself through various dimensions, so we cannot exclude
that, rather by Laegna math, even minus-D would still contain some information, as we
could zoom it appropriately and see that in absolutely infinite space it’s still able to map into

something, where the size of the space might cancel the “minus” property; zooming enough
in, we can measure our own space as if it was minus space — what happens as we cross zero?
Does the zero exist haha to ask first Laegnaish question, with answers yes and no fitting the
particular solutions and aspects?).

Laegna Linearity

Each function can be mapped to linear space, given the proper transformation. For example,
information bits in infinity can be used to map curved line to linear space: while for each
subsequent infinity the curve is changing the direction, the new direction happens in the new
dimension and the linear representation is trivial. Doing math operations such as resizing etc., the
number can be achieved, which does this locally — it can become more linear or disappear,
depending on our operation and the number space, but basically we can project a curved line, which
we see as linear ourselves, with it’s mathematical representation.

For example, acceleration is linear and perhaps all the complex thing you do when you accelerate.

The problem is: usually these effects appear in subzero (underthreshold) and superzero
(overthreshold) spaces; the Eucleidic projection might not accept them so easily — it would pass
actual point coordinates, which do not exist. Still, by mathematical means, you can work out the
actual formulaes, in spaces, where such linearity is rather there, such as projecting a space, which
needs acceleration in local space. For mathematician, the case with linearity is to simplify the
equations, not definitely to project this directly into simpler space, which is not linear; rather, we
take sub-zero directions with intellectual goals, not directly taking the physical angles — in infinity,
with given decision, we would do a slow turn in intended direction, not perhaps physically; passing
infinite space, we would turn in right direction each time we see it’s lost — in final value, it becomes
trivial that the direction we reached was rather the direction we initially started to go into, since in
the initial angular system the angle is either subzero or superzero, which is rather our projective
decision and not the property of this angle, where in Laegna we describe behaviours of systems by
this.

In higher-octave matrix, the system with acceleration and decceleration is linear.

We map that while we have number of digits for visible space, we assume that it’s straight through
every dimension it would approach: then, it forms a subzero and superzero fractal, repeating it’s
direction in other dimensions, where we measure things in the same way: for example if direction is
“up”, in sense of getting better, indeed we need to get better in any dimension, in any given future,
or we would fail the very same direction and it’s meaning; we are not considering that after we lose
the coordinate, the new idea of going “up” is not essentially completely new; rather it’s the
innovation of the same thing.

* Mapping such number, we see that to keep it a straight line, it would adapt the frequency
and direction: for example, if 100 digit number is vibrating in certain way, and heading in
certain direction, when we stretch it to 5 digit number: it would lose it’s direction in infinity,
if this would be simply all the digits compressed, which is the solution we actually use. With
heavier math, we still achieve the correct solution, and we are bound to replicate it
intuitively: the number would look, something like having the same vibration, but 2 times
where it was 50 times there in long number — to average the relations perhaps, because I
don’t have many concrete numbers —, as without doing this, it would point in different
direction. For example, as it’s a slice of infinite number: repeat it 50 times and you should

get close to original number, without rounding errors, indeed without repeating the same
vibration, the length, direction or any other property of the number would be different,
which means it was not a linear transformation!

* Here we see: the frequential number, indeed does not lose it’s invariant frequency under
normal transformations, such as basic affine transformations we probably need the most in
this phase of transistion — even if I cannot make use of Tilt, I have now seen just one use
case where it does not look senseless and non-real compared to rotate, resize, pan, which all
look like basic things one needs :) If I have Tilt, I would like to have also clouds, fire and
woman’s face as primitive mathematical shapes haha! :D Well but it’s hard to avoid the Tilt
with a proper matrix.

Notation for Accelerative Numbers
Another use of braces: you can use braces to create such number groups:

* You define braces in a way that A(AA)A would equal to AAAA — normally, we use braces
for different purpose, but this is one notation and you could find a distinct shape, color or
description for your braces, where I have only 3 types initially here on my keyboard.

* If you write A(AAA, you see that you have unclosed space. This is not a syntax error, but it
means that by each step, you would continue the number inside the braces. If you use
normal notation, where the rest is only one digit, you would start new and new digits inside
a digit, achieving a curved shape — if this is infinite effect, indeed the number is accelerating
or deccelerating, representing something. In another interpretation, where as I said I don’t
mean just that: you compare with programming, where for example adding { A=A+ 1 },
where it’s recursive block, would create acceleration to A, where you can map those to
normal values in higher space and thus, the case makes sense.

o The braces: imagine them symmetrically, where they turn the inwards digits smaller, but
also affect the outwards digits in opposite direction, where they are not one digit. In such
case you would get heavily curved space — I don’t need any right now, so I leave this as
such, but assuming you can play with the idea even if you, too, don’t need it right now :)

Notice: as the dimensions appear, you might feel you need more numbers for them; I don’t specify
even all the trivialities of them — rather, Laegna system accounts for this; for example my binary
system rather involves one octave of Truth, but it’s compatible to be continued as you actually run
into the limits we have — right now, indeed, we need a basic simulation and the case where we can
proceed further.

IO positioning
IO can be positioned before or after AE.
In first case, it’s counting from zero downwards — in second case, from infinity downwards.

By this property, they map very well: from this infinity, as well, we can count downwards from the
top, not upwards from the bottom, where there is the uncountable zone. With given precision, we
can count from upwards. By this property, the {0 and 10, meaning the normal position of IO here,
have synchronous directions: using them without accent rather refers to the case that they are hard
to calculate separately, and thus they are heavily frequential; one smoothly becoming another.

Laegna Multidimensional Number System

Al asked me: to support multidimensionality and it’s complexity, you would need to reason, why
you need all this dimensions. I really included this answer, in my post, but really: we can reason this
now.

First dimension: Logex and Mathematecs

This is the dimension:
* 4 logecs truth values are equal to 4 numeric values of mathematecs.

* Even long numbers yield reasonable solutions to Logecs, which works very well with
dimensions, which won’t give the whole units.

* Mathematecs can be directly used to do operations with Logecs.

* Basically for the basic math operators, they also make sense as L.ogecs operators as you can
trivially see how multiplication, division, addition, subtraction make sense, along with other
operations as these 4 are rather I, O, A and E, respectively divide, subtract, add, multiply;
where U and V are averaging and something like geometric averaging, which opens
upwards. Logecs operations, the same way, such as and or or, map easily to mathematical
transformations.

Seamlessly: these dimensions are so integrated, that it’s even hard to notice that these are basic
dimensions and you are not working just with one dimension in any imaginable sense, but rather
two — Logecs and Mathematecs. While it’s sometimes not noticeable, it’s rather more noticeable to
a programmer, who has to implement the system.

R and T dimension of the Number

Number Length and Percentage:

* For Length, AAA has R=3, while A has R=1. For example, while they are equally worth:
doing “A” three times must be equivalent to doing “AAA” 1 time, depending in precise
calculation AAA might cost also 3 times more so that there would be no difference; in other
cases AAA would benefit from things like grander plan, better prevision, or the case that you
want to use R for some purpose.

* For Percentage, AAA and A have it A, while EE would have it E — AEAE is rather equal to
AE, more or less. This is the direction of the number.

* Sometimes the numbers are more literal, where you read AAE as being equal to rather AE or
E, and in each case counting to 2; you don’t give any special meaning to R and T
transformations.

* Rand T are often important: when we develop, this means accelerate into higher spaces and
vibrations, we replace the name of same activity with a longer number which fits our typical
activities. We can consider that rich, who is eating, might enjoy additional qualities related
to poor, who is eating; but we might think otherwise — similar question appears, if eating is
E, with numbers E, AE, AAE.

R and T dimension of the digital aspect of the Number

Normally, R contains the positions, T contains the values:
* We can map position to pixel coordinate, value to it’s color.
* We can map position to physical coordinate, value to it’s state.
* Usually, we find correlating R and T properties of systems we study.

* Indeed, we can turn T into space or R into value, such as writing down the coordinates
themselves; then it’s complex interaction.

Most typical R values:

* A: Single digit number is referred mostly by base-1, where the number of “A”’s you write is
the number itself, for example AAA = 3, AAAAA = 5. By this system, it’s position “A”,
which is +1. In words, either space (the final value, but also kind of negative) or opposite,
the smaller degree (finite) is used — normally we denote time as finite, but in language we
use only one or two digits typically, and one digit often has higher power.

* AA: Two digit numbers represent either position OA, -1 and 1, where the first digit is
negative, or AO, 1 and 2, where the second digit relates to infinity. Typically, number value
is considered part of this: OA rather positions O to -1, while EE is typically infinity squared
or 4. In words, time (temporal value, process is used — first letter is then minus, such as oa),
or eternity is used, where the second digit refers to infinity, such as ee.

* AAA: three digits are usually referring: first digit is negative, -1, followed by positive digits
1 and 2. This is rather irregular number so we would try to convert to 4 or 2 digits to get a
normalized form. Sometimes, 3-digit numbers map to XYZ space, especially if they contain
XYZ values.

e AAAA: IOAE could be used either to denote values from -2 to 2, or values from 1 to 4,
where bigger numbers are rather candidates for the latter.

* Normally: we assume U at the middle or beginning of the word, and count with normal
Laegna numbers — for different types of numbers, especially the same type as the type of the
number itself, are used to denote the position; the negativity or positivity, also other
attributes of the Laegna index of the number is used for digit position convention.

» This way, EE and EEEE would be very special for example: in signed space and simplified
signed space (for words, for example), “EE” would be of length “E” — A=1 and E=2, and
then it refers to infinity in octave 2; in unsigned space — four E’s have this length, and they
refer to infinity. Thus, very often a four-digit number is kind of complete, referring to angle
in infinity.

Positional encoding
We use bold and italic for positional encoding:

* JOAE — the first digits, being italic, are at negative positions.

* AEIO - the last digits, being bold, are at positions f and O, at the higher octave, and thus are
at coposetive positions (P with accent upwards).

« AEIOVVV -V, bold and italic, is at the exterior.

Notice that italic is downwards accent of position itself, where bold is upwards accent, and bold
italic is like two dots accent. We don’t have easily more accents for positional encoding, but we
have numerous ways to describe them, for example positions easily follow the digit values, spaces
position immediately, and we have T and R operators to position the number.

RT interaction
Sometimes R and T interact:

* Actual position of O and A can be seen like moving 0.5 digits left or right — O is one digit
left compared to A. This can involve proper settings for this to make any sense (it might not
change the numeric value, but refer to the fact that by this value, a neutral digit such as
having each digit “1”, would then be able to express it with position only, where several
digits at the same position can create the numbers — it’s a map of the T=R property, where in
this way we basically have a little bit of the situation of having only R, which can simplify
imagination and calculations, or understanding of number philosophy, even if it’s hard to
instantly find a particular easy example).

* TandE, in this context, might have 4 digit difference. In other settings, they move the whole
number one digit left or right, where the digit is supposed to map the L value — while L
value is very small, but fractally, it gives a second octave into such manner.

lota e: the basic

Notice I put the accent in the beginning to mark the numbers in the basic octave.

The numeric values:

. I1=-2
. 0=-1
« A=1
« E=2

This is the basic number scale; and for our purposes equal to their unsigned values as described in
the beginning of this document.

These values are either linear, where positive numbers are positive and negative numbers are
negative; or polar, where interior numbers are positive, exterior numbers are negative. Normally,
when counting the exterior sign, we consider that I < E, O <A, so the sign is -2 for I, 1 for O, 2 for
A and -1 for E (we slightly target the “true” when comparing, consistent to “hope” when we have to
select anything to all, and especially consistent to having separate indexes for each number by their
qualities, where it would be irregular to have one axe, which counts several input values simply as
being equal).

The values have interior values, which equal to their positional value.
They have exterior values:

* The face value, as viewed from direction of infinity, would rather be equal to it’s local value.

* It’s visible that O and A, while being normally more important locally than I and E, are less
important — farther — when looking from infinity; where they have the same numeric values,
they do not have the same strength, but rather they are far away.

* Thus, to write the exterior value, we rearrange the numbers: OIEA, where I and E are
central, O and A are secondary: the numeric value would be wrong, but not the case that
while IE are local, visible values from infinity, OA would be very far — thus becoming rather
the limits. Here, what applies is similar to 18 encoding: it has two zeroes at the middle,
where zero between 48 (6-7, where - is averaging unlike *, which multiplies) is accelerative
zero; in case of OIEA the case is that beween O and A, there is deccelerative zero, but
between I and E there is the local zero. Indeed, for 6 we have VOIEAU or OIVEAU,
unsigned and signed case. This is the closest to map eX coordinates of exceeta of V.

Opsga r: the basic

Well this funny word, invented just to create an analogous word here, not definitely a standard
Laegna word, but understandable given a little consideration :)

S, related to T, is the downwards attribute — Space is not effecting locally.

R: we can see the order is in reverse, in any possible dimension. You can achieve this, as well as
ponegative alternatives “Rosidriad” etc., by inversing the number:

* With the complex value, each possible direction is rotated: rotating any more would already
come back, so by discrete analysis within given number scope of discrete digits, this is 180
degrees, but not in normal number space, but rather transcendental or perhaps transformative
space: also the higher-dimensional properties and fractal properties, in left-right, up-down,
but also in-out directions, which are all opposite.

* Complexity of nurmal numbers, such as O in base-2 or IO in base-4, are not so heavily
rotated but rather the rotation is visible in 1 dimension, and it rather fits the linear scale.
Complex axe itself does account with the ZY reversal from coordinate system of X, which
disappears as you zoom out.

Dens

A ten can be converted to two bits:

* Either each value is mapped to given R or T, which is often used for diagonal (infinity)
values. Each two Dens refer to one Ten.

* Values can be divided to two groups, with two values in both. Value of R denotes, to which
group the digit belongs. For any given two groups, there are two complementary groups:
where T denotes belonging to one of such groups, the value is complete with two Dens
referring to one Ten.

Dens, especially the ones related to R and T, do not add number complexity to original number —
instead, they emphasize the existing qualities or dimensions of that number, and learning these
dimensions makes us to notice them in numbers: numbers do not get more complex, but simpler as
one is able to understand the theorems. Given a Ten, those pairs of Dens exist anyway and one does
not need any additional space or calculations.

Indeed, with Dens additional calculations are enabled.

Dens also purify the information space: many mathematical operations, where they are done in
regards of Dens, would keep the properties given by those Dens intact — where digits could be lost
by imprecise calculations, additional dimensions can be used to map the calculations, where each
part of a number will remain pure — for example, computer can decide how to keep the free
variables and not mess it all together. Rather, L.aegna numbers should also be able to keep the free
variables, but to analyze this case and decide, where you need support — you need to analyze Dens.

Binary
e 00-1I
« 01-0
« 10-A
« 11-E

Complex numbers of RTRT format
Even numbers have R, the complex part (XZ i.e. X Y and Z, 48, QR are used).

Odd numbers have T, the real part (xz, 14, OP are used).

Complex numbers

For XYZ: 19 contains the complex number digits with two components, and 9 is it’s V while 5 is
it’s zero.

For base-16 complex: most letters of alphabet are used to form two-dimensional digits.

Complex dimension, as in Latin math where it turns numbers to 2D, is a natural effect, which
appears at infinities, and turns numbers into multi-D; thus this one as well is not an invented
dimension, but one which exists anyway — you can explore it with complex numbers.

Base-2

OA can be used for base-2 numbers — while you can call them Dens, in this situation they are rather
Tens, which can be 2, 4 or 6 or even 8 or 16, as it literally means the same as “10” in binary is
rather 3, but it’s still pronounced ten. In Laegna, “Ten” is the common name for not exactly the
number “10” in every case, but especially the range in which the digits are, through their
conversations; the underlying concept is Ten, which rather comes from the word “nine” of I Ching.

This dimension will zoom the projective system in a way that properties of R and T would be
merged: given that your digit position and digit value are both in base-2, the system would see local
effects and infinity effects in one single dimensional system, where frequentially the base 2
numbers are at their own frequency, and the variables in this projection are rather free — of the
actual frequencies/numbers, there are no interferences. Thus, also this one is not invented
dimension, but the one, which appears at your measurements; for example you can create an unit
circle with this property.

Extroduction

So here, we have summarized:

The basis for Laegna Computer System, particularly Laegna Programming Environment.

o Laegna Computer System: Any system we manage to get into native support of
ponegative Logecs and Mathematecs.

The basis of Laegna Number System, as it’s supposed to be seen by Computer Scientist.

Let’s see how we use numbers in computers:

For binary integers, for example for 16 bit signed integer, we can assume we get some kind
of laegnaish system if we use the case that while positive numbers start from zero, negative
numbers rather use -1: based on local appearance of signed number, you can map at least
some two-bit system where it has similar look and feel to Laegna; indeed you need to
continue the math. R would be constant — 16 bit integer has R=8, not variable length.

For floats: they contain similar kind of binary integer, where you can map something; they
contain the exponent factor, where you can map some basic octave.

While what you get is not exactly the Laegna number, it’s surprisingly close! It actually maps one-
to-one to early Laegna number, but those had the problem that they did not exactly fit the
definitions I had: there were some resolutions to definitions, such as EE needs to be E squared and
EEEE needs to be EE squared — this is extremely important property, but the initial ways to achieve
this were rather hacks, where in my thinking I could not avoid such property.

Even and Odd number systems

Even system:

There is no zero.

Each number is a whole number: A, for example, is in range from 0 to 1, where O is in range
from -1 to 0.

Digits after the comma / dot are thus in such position: for A, Aa! means 0 and Ae! means 1,
where the exclamation mark repeats the position indefinitely, such as A! would mean the
same as A(a)\inf, repeating the “a” to infinity.

Odd system:

There is U, and for base-4 there is also V; for base-2 U and V are integrated just like O and I
or A and E.

U is either of zero width, invisible number whose actual values are in lower octave — it has
even zero probability to exist. In such case, the digits after comma / dot are equal to even
system, or it might even be called one.

Otherwise, U is as wide as any other number, and for example Au! = A, Ai! =-0.5, Ue! = 0.5
and Ui! = -0.5, where Oe! = -0.5.

Second Book (coming soon)

Implementing Laegna Numbers in Python

This implementation:

* It’s simplistic and rather easy to program, where I removed any kind of irregularities (and
they are full of them) for this computational effort; in computers we use absolutely
normalized and standardized numbers for low-level programming and internal system; while
it’s supposed to enable calculations to implement high-level numbers and even language.

* It’s meant to be basic effort to train an Al It needs to generate listings, cards etc. once we
are ready: but herein, I want to create the basic tools — things such as teaching different ways
of wording, different ways of representing, and making the Al get used with different
conditions of them is a longer process.

* Itake the following assumption: given this set of numbers, computer would learn the basic
logic of Laegna numbers. Actual numbers might be different, but based on this logic and the
generalizations it should be able to use them.

Okay let’s dive in..

The following code does not produce number values or any tests, but it will produce a random
Laegna number in some format every time you run it — the worlds most useless code written in the
unslept state of finishing this document: but it’s able to give you numbers with proper digits in
different Laegna formats. What you can do with this:

* You have a list of unsigned digits each time you run it.

* Digit’s value is from 0 to 1 or from 0 to 3 depending on the format, where U and V flags can
be set; if both are set, a special character appears — yet to find how to properly print
something similar to Laegna character, but this does not matter much in programming this.

* It does not use accents nor capitalize, and there are only full numbers; this is not hard to fix
but perhaps not needed in the first place right now, I don’t know whether you need any.

* What you can do with this:

© Number digits and some associated number values are generated structurally, so that you
know where to put each number — with small number of parameters it’s able to generate
some different types of numbers logically.

© You can add digit calculations for conversations to decimal system.

o U andV, currently, I think for U you need to generate numbers, where each U appears as
both O and A, and each V appears as both I and E — for example, having digits UV, you
generate OI, OE, Al, AE; for digits which are marked as both U and V, you generate all
possibilities of given type. U and V are shared by X and Y axes, so you do it for both,
and they both have the same digits unknown.

= For this list, average it and you get the zero-based value.

An example:
AAEE =4
AAEA=3
AAAE =2
AAAA=1
0000 =-1
0001 = -2
O0IO =-3
OOII = -4
Also:
mr=1

o =2

IITA =3

IIIE = 4
[I0I =5
etc.

For base 2 unsigned:
000, O0A, OAO, OAA, AOO, AOA, AAO, AAA...

(for signed version, follow the base 4 example)

Given you know some number types, you can implement such valuating and generate cards for an
Al Both X and Y axe are either base 2 or base 4, so you don’t have too much to do (in next weeks, I
probably implement it myself because it’s now the implementation phase):

* Use the x and y numbers: x is the real, y is the imaginary component.
* Create decimal mappings for base 2 and base 4.

* Complex number is not necessarily base 4 or 16, but rather it’s two axes of base 2 or base 4
— given this, once you have 2 and 4 systems, you simply use two axes of the complex
number.

I think I implement more of this over nearby time, and then I see whether I add book 2, or the
python files along with this book; in any way, it’s very fine if others have some versions.

import math
import numpy as np

import mpmath as mp

basel6 = ["GFEH", "CBAD", "QPOR", "KIJL"]

class Digit:
def __init__(self, fmt):
self.fmt = fmt
self.x = np.random.randint(0, fmt.f)

self.y = np.random.randint(0, fmt.f)

if np.random.randint(1, fmt.f * 4) == 1:
self.ux = np.random.randint(0, 2) ==

self.uy = np.random.randint(0, 2) ==

else:
self.ux =0
self.uy =0

def __str_ (self):
Base 2
if self.fmt.I:
if self.ux and self.uy: return "U"
if self.ux: return "U"
if self.uy: return "W"
if not self.fmt.1:
if self.ux and self.uy: return "?"
if self.ux: return "0"
if self.uy: return "9"
if self.fmt.f == 2 and (self.fmt.w):
if self.fmt.1:
if selfx==1:1="A"
if self.x==0:1="0"
if self.fmt.d == True:
if self.y==1:1+="A"
if self.y ==0:1+="0"
return |
if not self.fmt.1:
if self.x ==1:1="2"
if self.x==0:1="1"
if self.fmt.d == True:
if self.y ==1:1+="4"
if self.y ==0:1+="3"

return 1

if self.fmt.f == 2:
if self.fmt.l:
if self.x == 1 and self.y == 1: return "T"
if self.x == 0 and self.y == 1: return "S"
if self.x == 1 and self.y == 0: return "N"
if self.x == 0 and self.y == 0: return "M"
if not self.fmt.l:
if self.x == 1 and self.y == 1: return "4"
if self.x == 0 and self.y == 1: return "3"
if self.x == 1 and self.y == 0: return "2"
if self.x == 0 and self.y == 0: return "1"
if self.fmt.f == 4 and (self.fmt.w == False or self.fmt.w):
if self.fmt.l:
if self.x ==3:1="E"
if self.x==2:1="A"
if self.x==1:1="0"
if self.x==0:1="1"
if self.fmt.d == 2:
if self.y == 3:1+="R"
if self.y ==2:1+="0"
if self.y == 1: 1 +="P"
if self.y ==0:1+="Q"
return |
if not self.fmt.1:
if self.x==3:1="4"
if self.x ==2:1="3"
if self.x ==1:1="2"
if self.x==0:1="1"
if self.fmt.d == 2:
if self.y ==3:1+="8"
if self.y ==2:1+="7"
if self.y==1:1+="6"

if self.y ==0: 1 +="5"
return 1
if self.fmt.f == 4 and self.fmt.d == True:

return base16[self.x][self.y]

return "(" + str(self.x) + ", " + str(self.y) + ")"

class Digital:
def __init__(self):
self.setf(np.random.randint(1, 3) * 2)
self.setd(np.random.randint(1, 3))
self.setl(np.random.randint(1, 3) == 1)
self.setw(np.random.randint(1, 3) == 1)

self.generate()

Set the frequency; for example 2 is base-2, 4 is base-4
def setf(self, f):

print("f: ", f)

self.f =f

Set the dimension; 1=real and 2=complex number
def setd(self, d):

print("d: ", d)

self.d=d

Switch between Laegna and Decimal representation; True if Laegna
def setl(self, 1):

print("l: ", 1)

self.l=1

True if digit is RT double-character, false otherwise

def setw(self, w):

print("w: ", w)

selff w=w

def _ str_ (self):
ex =""
for n in self.number:
ex += str(n)

return ex

Randomly generate a number

def generate(self):
length = np.random.randint(1, 101)
self.number =[]
for a in range(0, length):

self.number.append(Digit(self))

num = Digital()

print(str(num))

	Denary
	Tenary
	Decimal Signed
	Decimal Unsigned
	Decet
	Coordinate Systems
	Logex Ten
	Logex Tensor:
	Logex Combinator:
	Logex Memory and Files
	Linking
	Program
	Block Structure
	Screens
	Command Syntax, Paradigm and Running Order
	Assigning and Commanding
	Imperator
	Controller
	Proofs in Action

	Laegna Computational Language
	Laegna Number System for AI Training
	Parameters of Laegna Numbers

	Laegna Multidimensional Number System
	First dimension: Logex and Mathematecs
	R and T dimension of the Number
	R and T dimension of the digital aspect of the Number
	Íota e: the basic
	Ópsqa r: the basic
	Dens
	Binary
	Complex numbers of RTRT format
	Complex numbers
	Base-2
	Extroduction
	Even and Odd number systems

